共查询到20条相似文献,搜索用时 0 毫秒
1.
Travel time, travel time reliability and monetary cost have been empirically identified as the most important criteria influencing route choice behaviour. We concentrate on travel time and travel time reliability and review two prominent user equilibrium models incorporating these two factors. We discuss some shortcomings of these models and propose alternative bi-objective user equilibrium models that overcome the shortcomings. Finally, based on the observation that both models use standard deviation of travel time within their measure of travel time reliability, we propose a general travel time reliability bi-objective user equilibrium model. We prove that this model encompasses those discussed previously and hence forms a general framework for the study of reliability related user equilibrium. We demonstrate and validate our concepts on a small three-link example. 相似文献
2.
After the widespread deployment of Advanced Traveler Information Systems, there exists an increasing concern about their profitability. The costs of such systems are clear, but the quantification of the benefits still generates debate. This paper analyzes the value of highway travel time information systems. This is achieved by modeling the departure time selection and route choice with and without the guidance of an information system. The behavioral model supporting these choices is grounded on the expected utility theory, where drivers try to maximize the expected value of their perceived utility. The value of information is derived from the reduction of the unreliability costs as a consequence of the wiser decisions made with information. This includes the reduction of travel times, scheduling costs and stress. This modeling approach allows assessing the effects of the precision of the information system in the value of the information.Different scenarios are simulated in a generic but realistic context, using empirical data measured on a highway corridor accessing the city of Barcelona, Spain. Results show that travel time information only has a significant value in three situations: (1) when there is an important scheduled activity at the destination (e.g. morning commute trips), (2) in case of total uncertainty about the conditions of the trip (e.g. sporadic trips), and (3) when more than one route is possible. Information systems with very high precision do not produce better results. However, an acceptable level of precision is completely required, as information systems with very poor precision may even be detrimental. The paper also highlights the difference between the user value and the social value of the information. The value of the information may not benefit only the user. For instance, massive dissemination of travel time information contributes to the reduction of day-to-day travel time variance. This favors all drivers, even those without information. In these situations travel time information has the property that its social benefits exceed private benefits (i.e. information has positive externalities). Of course, drivers are only willing to cover costs equal or smaller than their private benefits, which in turn may justify subsidies for information provision. 相似文献
3.
This paper proposes an integrated Bayesian statistical inference framework to characterize passenger flow assignment model in a complex metro network. In doing so, we combine network cost attribute estimation and passenger route choice modeling using Bayesian inference. We build the posterior density by taking the likelihood of observing passenger travel times provided by smart card data and our prior knowledge about the studied metro network. Given the high-dimensional nature of parameters in this framework, we apply the variable-at-a-time Metropolis sampling algorithm to estimate the mean and Bayesian confidence interval for each parameter in turn. As a numerical example, this integrated approach is applied on the metro network in Singapore. Our result shows that link travel time exhibits a considerable coefficient of variation about 0.17, suggesting that travel time reliability is of high importance to metro operation. The estimation of route choice parameters conforms with previous survey-based studies, showing that the disutility of transfer time is about twice of that of in-vehicle travel time in Singapore metro system. 相似文献
4.
In many countries, decision-making on proposals for national or regional infrastructure projects in passenger and freight transport includes carrying out a cost–benefit analysis for these projects. Reductions in travel times are usually a key benefit. However, if a project also reduces the variability of travel time, travellers, freight operators and shippers will enjoy additional benefits, the ‘reliability benefits’. Until now, these benefits are usually not included in the cost–benefit analysis. To include reliability of travel or transport time in the cost–benefit analysis of infrastructure projects not only monetary values of reliability, but also reliability forecasting models are needed. As a result of an extensive feasibility study carried out for the German Federal Ministry of Transport, Building and Urban Development this paper aims to provide a literature overview and outcomes of an expert panel on how best to calculate and monetise reliability benefits, synthesised into recommendations for implementing travel time reliability into existing transport models in the short, medium, and long term. The paper focuses on road transport, which has also been the topic for most of the available literature on modelling and valuing transport time reliability. 相似文献
5.
Urban expressways usually experience several levels of service (LOS) because of the stop-and-go traffic flow caused by congestion. Moreover, multiple shock waves generate at different LOS interfaces. The dynamic of shock waves strongly influences the travel time reliability (TTR) of urban expressways. This study proposes a path TTR model that considers the dynamic of shock waves by using probability-based method to characterize the TTR of urban expressways with shock waves. Two model parameters are estimated, namely distribution of travel time (TT) per unit distance and travel distances in different LOS segments. Generalized extreme value distribution and generalized Pareto distribution are derived as distributions of TT per unit distance for six different LOS. Distribution parameters are estimated by using historical floating car data. Travel distances in different LOS segments are calculated based on shock wave theory. The range of TT along the path, which can help drivers arrange their trips, can be obtained from the TTR model. Finally, comparison is made among the proposed TTR model, generalized Pareto contrast model, which does not consider different LOS or existence of shock waves, and normal contrast model, which assumes TT per unit distance as normal distribution without considering shock wave. Results show that the proposed model achieves higher prediction accuracy and reduces the prediction range of TT. The conclusions can be further extended to TT prediction and assessment of measures to improve reliability of TT in a network. 相似文献
6.
Lawrence Frank Mark Bradley Sarah Kavage James Chapman T. Keith Lawton 《Transportation》2008,35(1):37-54
The primary purpose of this study was to investigate how relative associations between travel time, costs, and land use patterns
where people live and work impact modal choice and trip chaining patterns in the Central Puget Sound (Seattle) region. By
using a tour-based modeling framework and highly detailed land use and travel data, this study attempts to add detail on the
specific land use changes necessary to address different types of travel, and to develop a comparative framework by which
the relative impact of travel time and urban form changes can be assessed. A discrete choice modeling framework adjusted for
demographic factors and assessed the relative effect of travel time, costs, and urban form on mode choice and trip chaining
characteristics for the three tour types. The tour based modeling approach increased the ability to understand the relative
contribution of urban form, time, and costs in explaining mode choice and tour complexity for home and work related travel.
Urban form at residential and employment locations, and travel time and cost were significant predictors of travel choice.
Travel time was the strongest predictor of mode choice while urban form the strongest predictor of the number of stops within
a tour. Results show that reductions in highway travel time are associated with less transit use and walking. Land use patterns
where respondents work predicted mode choice for mid day and journey to work travel.
Lawrence Frank is an Associate Professor and Bombardier Chair in Sustainable Transportation at the University of British Columbia and a Senior Non-Resident Fellow of the Brookings Institution and Principal of Lawrence Frank and Company. He has a PhD in Urban Design and Planning from the University of Washington. Mark Bradley is Principal, Mark Bradley Research & Consulting, Santa Barbara California. He has a Master of Science in Systems Simulation and Policy Design from the Dartmouth School of Engineering and designs forecasting and simulation models for assessment of market-based policies and strategies. Sarah Kavage is a Senior Transportation Planner and Special Projects Manager at Lawrence Frank and Company. She has a Masters in Urban Design and Planning from the University of Washington and is a writer and an artist based in Seattle. James Chapman is a Principal Transportation Planner and Analyst at Lawrence Frank and Company in Atlanta Georgia. He has a Masters in Engineering from the Georgia Institute of Technology. T. Keith Lawton transport modeling consultant and past Director of Technical services, Metro Planning Department, Portland, OR, has been active in model development for over 40 years. He has a BSc. in Civil Engineering from the University of Natal (South Africa), and an M.S. in Civil and Environmental Engineering from Duke University. He is a member and past Chair of the TRB Committee on Passenger Travel Demand Forecasting. 相似文献
T. Keith LawtonEmail: |
Lawrence Frank is an Associate Professor and Bombardier Chair in Sustainable Transportation at the University of British Columbia and a Senior Non-Resident Fellow of the Brookings Institution and Principal of Lawrence Frank and Company. He has a PhD in Urban Design and Planning from the University of Washington. Mark Bradley is Principal, Mark Bradley Research & Consulting, Santa Barbara California. He has a Master of Science in Systems Simulation and Policy Design from the Dartmouth School of Engineering and designs forecasting and simulation models for assessment of market-based policies and strategies. Sarah Kavage is a Senior Transportation Planner and Special Projects Manager at Lawrence Frank and Company. She has a Masters in Urban Design and Planning from the University of Washington and is a writer and an artist based in Seattle. James Chapman is a Principal Transportation Planner and Analyst at Lawrence Frank and Company in Atlanta Georgia. He has a Masters in Engineering from the Georgia Institute of Technology. T. Keith Lawton transport modeling consultant and past Director of Technical services, Metro Planning Department, Portland, OR, has been active in model development for over 40 years. He has a BSc. in Civil Engineering from the University of Natal (South Africa), and an M.S. in Civil and Environmental Engineering from Duke University. He is a member and past Chair of the TRB Committee on Passenger Travel Demand Forecasting. 相似文献
7.
Estimating the travel time reliability (TTR) of urban arterial is critical for real-time and reliable route guidance and provides theoretical bases and technical support for sophisticated traffic management and control. The state-of-art procedures for arterial TTR estimation usually assume that path travel time follows a certain distribution, with less consideration about segment correlations. However, the conventional approach is usually unrealistic because an important feature of urban arterial is the dependent structure of travel times on continuous segments. In this study, a copula-based approach that incorporates the stochastic characteristics of segments travel time is proposed to model arterial travel time distribution (TTD), which serves as a basis for TTR quantification. First, segments correlation is empirically analyzed and different types of copula models are examined. Then, fitting marginal distributions for segment TTD is conducted by parametric and non-parametric regression analysis, respectively. Based on the estimated parameters of the models, the best-fitting copula is determined in terms of the goodness-of-fit tests. Last, the model is examined at two study sites with AVI data and NGSIM trajectory data, respectively. The results of path TTD estimation demonstrate the advantage of the proposed copula-based approach, compared with the convolution model without capturing segments correlation and the empirical distribution fitting methods. Furthermore, when considering the segments correlation effect, it was found that the estimated path TTR is more accurate than that by the convolution model. 相似文献
8.
Travel behavior researchers have been intrigued by the amount of time that people allocate to travel in a day, i.e., the daily
travel time expenditure, commonly referred to as a “travel time budget”. Explorations into the notion of a travel time budget
have once again resurfaced in the context of activity-based and time use research in travel behavior modeling. This paper
revisits the issue by developing the notion of a travel time frontier (TTF) that is distinct from the actual travel time expenditure
or budget of an individual. The TTF is defined in this paper as an intrinsic maximum amount of time that people are willing
to allocate for travel. It is treated as an unobserved frontier that influences the actual travel time expenditure measured
in travel surveys. Using travel survey datasets from around the world (i.e., US, Switzerland and India), this paper sheds
new light on daily travel time expenditures by modeling the unobserved TTF and comparing these frontiers across international
contexts. The stochastic frontier modeling methodology is employed to model the unobserved TTF as a production frontier. Separate
models are estimated for commuter and non-commuter samples to recognize the differing constraints between these market segments.
Comparisons across the international contexts show considerable differences in average unobserved TTF values. 相似文献
9.
Recent empirical studies on the value of time and reliability reveal that travel time variability plays an important role on travelers' route choice decision process. It can be considered as a risk to travelers making a trip. Therefore, travelers are not only interested in saving their travel time but also in reducing their risk. Typically, risk can be represented by two different aspects: acceptable risk and unacceptable risk. Acceptable risk refers to the reliability aspect of acceptable travel time, which is defined as the average travel time plus the acceptable additional time (or buffer time) needed to ensure more frequent on‐time arrivals, while unacceptable risk refers to the unreliability aspect of unacceptable late arrivals (though infrequent) that have a travel time excessively higher than the acceptable travel time. Most research in the network equilibrium based approach to modeling travel time variability ignores the unreliability aspect of unacceptable late arrivals. This paper examines the effects of both reliability and unreliability aspects in a network equilibrium framework. Specifically, the traditional user equilibrium model, the demand driven travel time reliability‐based user equilibrium model, and the α‐reliable mean‐excess travel time user equilibrium model are considered in the investigation under an uncertain environment due to stochastic travel demand. Numerical results are presented to examine how these models handle risk under travel time variability. 相似文献
10.
Empirical studies have revealed that travel time variability (TTV) can significantly affect travelers’ behaviors and planners’ cost-benefit assessment of transportation projects. It is therefore important to systematically quantify the value of TTV (VTTV) and its impact. Recently, Fosgerau’s valuation method makes this quantification possible by converting the value of travel time (VTT) and the VTTV into monetary unit. Travel time reliability ratio (TTRR), defined as a ratio of the VTTV to the VTT, is a key parameter in Fosgerau’s valuation method. Calculating TTRR involves an integral of the inverse cumulative distribution function (CDF) of the standardized travel time distribution (STTD), i.e., the mean lateness factor. Using a well-fitted STTD is a straightforward way to calculate TTRR. However, it will encounter the following challenges: (1) determination of a well-fitted STTD; (2) non-existence of an algebraic expression for the CDF and its inverse CDF; and (3) lack of a closed-form expression to efficiently calculate TTRR. To circumvent the above issues, this paper proposes a distribution-fitting-free analytical approach based on the Cornish-Fisher expansion as an alternative way to calculate TTRR without the need to fit the whole CDF. The validity domain is rigorously derived for guaranteeing the accuracy of the proposed method. Realistic travel time datasets that cover 17 links are used to systematically explore the feature and accuracy of the proposed method in estimating TTRR. The comparative results demonstrate that the proposed method can efficiently and effectively estimate TTRR. When travel time datasets satisfy the validity domain, the proposed method outperforms the distribution fitting method in estimating TTRR. 相似文献
12.
Because individuals may misperceive travel time distributions, using the implied reduced form of the scheduling model might fall short of capturing all costs of travel time variability. We reformulate a general scheduling model employing rank-dependent utility theory and derive two special cases as econometric specifications to study these uncaptured costs. It is found that reduced-form expected cost functions still have a mean–variance form when misperception is considered, but the value of travel time variability is higher. We estimate these two models with stated-preference data and calculate the empirical cost of misperception. We find that: (i) travelers are mostly pessimistic and thus tend to choose departure times too early to achieve a minimum cost, (ii) scheduling preferences elicited using a stated-choice method can be relatively biased if probability weighting is not considered, and (iii) the extra cost of misperceiving the travel time distribution might be nontrivial when time is valued differently over the time of day and is substantial for some people. 相似文献
13.
Anthony Chen Zhong ZhouWilliam H.K. Lam 《Transportation Research Part B: Methodological》2011,45(10):1619-1640
In this paper, we extend the α-reliable mean-excess traffic equilibrium (METE) model of Chen and Zhou (Transportation Research Part B 44(4), 2010, 493-513) by explicitly modeling the stochastic perception errors within the travelers’ route choice decision processes. In the METE model, each traveler not only considers a travel time budget for ensuring on-time arrival at a confidence level α, but also accounts for the impact of encountering worse travel times in the (1 − α) quantile of the distribution tail. Furthermore, due to the imperfect knowledge of the travel time variability particularly in congested networks without advanced traveler information systems, the travelers’ route choice decisions are based on the perceived travel time distribution rather than the actual travel time distribution. In order to compute the perceived mean-excess travel time, an approximation method based on moment analysis is developed. It involves using the conditional moment generation function to derive the perceived link travel time, the Cornish-Fisher Asymptotic Expansion to estimate the perceived travel time budget, and the Acerbi and Tasche Approximation to estimate the perceived mean-excess travel time. The proposed stochastic mean-excess traffic equilibrium (SMETE) model is formulated as a variational inequality (VI) problem, and solved by a route-based solution algorithm with the use of the modified alternating direction method. Numerical examples are also provided to illustrate the application of the proposed SMETE model and solution method. 相似文献
14.
Empirical studies showed that travel time reliability, usually measured by travel time variance, is strongly correlated with travel time itself. Travel time is highly volatile when the demand approaches or exceeds the capacity. Travel time variability is associated with the level of congestion, and could represent additional costs for travelers who prefer punctual arrivals. Although many studies propose to use road pricing as a tool to capture the value of travel time (VOT) savings and to induce better road usage patterns, the role of the value of reliability (VOR) in designing road pricing schemes has rarely been studied. By using road pricing as a tool to spread out the peak demand, traffic management agencies could improve the utility of travelers who prefer punctual arrivals under traffic congestion and stochastic network conditions. Therefore, we could capture the value of travel time reliability using road pricing, which is rarely discussed in the literature. To quantify the value of travel time reliability (or reliability improvement), we need to integrate trip scheduling, endogenous traffic congestion, travel time uncertainty, and pricing strategies in one modeling framework. This paper developed such a model to capture the impact of pricing on various costs components that affect travel choices, and the role of travel time reliability in shaping departure patterns, queuing process, and the choice of optimal pricing. The model also shows the benefits of improving travel time reliability in various ways. Findings from this paper could help to expand the scope of road pricing, and to develop more comprehensive travel demand management schemes. 相似文献
15.
The effect of social comparisons on commute well-being 总被引:1,自引:0,他引:1
Maya Abou-Zeid Moshe Ben-Akiva 《Transportation Research Part A: Policy and Practice》2011,45(4):345-361
We study the effect of social comparisons on travel happiness and behavior. Social comparisons arise from exchanges of information among individuals. We postulate that the social gap resulting from comparisons is a determinant of “comparative happiness” (i.e. happiness arising from comparisons), which in turn affects subsequent behavior. We develop a modeling framework based on the Hybrid Choice Model that captures the indirect effect of social comparisons on travel choices through its effect on comparative happiness.We present an empirical analysis of one component of this framework. Specifically, we study how perceived differences between experienced commute attributes and those communicated by others affect comparative happiness and consequently overall commute satisfaction. We find that greater comparative happiness arising from favorable comparisons of one’s commute to that of others (e.g. shorter commute time than others, same mode as others for car commuters, and different mode than others for non-motorized commuters) increases overall commute satisfaction or utility.The empirical model develops only the link between social comparisons and happiness in the comparisons-happiness-behavior chain. It is anticipated that the theoretical framework that considers the entire chain will enhance the behavioral realism of “black box” models that do not account for happiness in the link between comparisons and behavior. 相似文献
16.
This paper presents a transit network optimization method, in which travel time reliability on road is considered. A robust optimization model, taking into account the stochastic travel time, is formulated to satisfy the demand of passengers and provide reliable transit service. The optimization model aims to maximize the efficiency of passenger trips in the optimized transit network. Tabu search algorithm is defined and implemented to solve the problem. Then, transit network optimization method proposed in this paper is tested with two numerical examples: a simple route and a medium-size network. The results show the proposed method can effectively improve the reliability of a transit network and reduce the travel time of passengers in general. 相似文献
17.
This study proposes an approach to modeling the effects of daily roadway conditions on travel time variability using a finite mixture model based on the Gamma–Gamma (GG) distribution. The GG distribution is a compound distribution derived from the product of two Gamma random variates, which represent vehicle-to-vehicle and day-to-day variability, respectively. It provides a systematic way of investigating different variability dimensions reflected in travel time data. To identify the underlying distribution of each type of variability, this study first decomposes a mixture of Gamma–Gamma models into two separate Gamma mixture modeling problems and estimates the respective parameters using the Expectation–Maximization (EM) algorithm. The proposed methodology is demonstrated using simulated vehicle trajectories produced under daily scenarios constructed from historical weather and accident data. The parameter estimation results suggest that day-to-day variability exhibits clear heterogeneity under different weather conditions: clear versus rainy or snowy days, whereas the same weather conditions have little impact on vehicle-to-vehicle variability. Next, a two-component Gamma–Gamma mixture model is specified. The results of the distribution fitting show that the mixture model provides better fits to travel delay observations than the standard (one-component) Gamma–Gamma model. The proposed method, the application of the compound Gamma distribution combined with a mixture modeling approach, provides a powerful and flexible tool to capture not only different types of variability—vehicle-to-vehicle and day-to-day variability—but also the unobserved heterogeneity within these variability types, thereby allowing the modeling of the underlying distributions of individual travel delays across different days with varying roadway disruption levels in a more effective and systematic way. 相似文献
18.
路网可靠度研究是国内外交通运输领域的一个重要研究方向。文章结合国内外时间可靠度模型研究的现状,介绍了公路网运行时间可靠度的模型以及算法,并展望了时间可靠度理论的研究方向。 相似文献
19.
A driver is one of the main components in a transportation system that influences the effectiveness of any active demand management (ADM) strategies. As such, the understanding on driver behavior and their travel choice is crucial to ensure the successful implementation of ADM strategies in alleviating traffic congestion, especially in city centres. This study aims to investigate the impact of traffic information dissemination via traffic images on driver travel choice and decision. A relationship of driver travel choice with respect to their perceived congestion level is developed by an integrated framework of genetic algorithm–fuzzy logic, being a new attempt in driver behavior modeling. Results show that drivers consider changing their travel choice when the perceived congestion level is medium, in which changing departure time and diverting to alternative roads are two popular choices. If traffic congestion escalates further, drivers are likely to cancel their trip. Shifting to public transport system is the least likely choice for drivers in an auto-dependent city. These findings are important and useful to engineers as they are required to fully understand driver (user) sensitivity to traffic conditions so that relevant active travel demand management strategies could be implemented successfully. In addition, engineers could use the relationships established in this study to predict drivers’ response under various traffic conditions when carrying out modeling and impact studies. 相似文献
20.
Electric travelling appears to dominate the transport sector in the near future due to the needed transition from internal combustion vehicles (ICV) towards Electric Vehicles (EV) to tackle urban pollution. Given this trend, investigation of the EV drivers’ travel behaviour is of great importance to stakeholders including planners and policymakers, for example in order to locate charging stations. This research explores the Battery Electric Vehicle (BEV) drivers route choice and charging preferences through a Stated Preference (SP) survey. Collecting data from 505 EV drivers in the Netherlands, we report the results of estimating a Mixed Logit (ML) model for those choices. Respondents were requested to choose a route among six alternatives: freeways, arterial ways, and local streets with and without fast charging. Our findings suggest that the classic route attributes (travel time and travel cost), vehicle-related variables (state-of-charge at the origin and destination) and charging characteristics (availability of a slow charging point at the destination, fast charging duration, waiting time in the queue of a fast-charging station) can influence the BEV drivers route choice and charging behaviour significantly. When the state-of-charge (SOC) at the origin is high and a slow charger at the destination is available, routes without fast charging are likely to be preferred. Moreover, local streets (associated with slow speeds and less energy consumption) could be preferred if the SOC at the destination is expected to be low while arterial ways might be selected when a driver must recharge his/her car during the trip via fast charging. 相似文献