首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 355 毫秒
1.
It is widely acknowledged that cyclists choose their route differently to drivers of private vehicles. The route choice decision of commuter drivers is often modelled with one objective, to reduce their generalised travel cost, which is a monetary value representing the combined travel time and vehicle operating cost. Commuter cyclists, on the other hand, usually have multiple incommensurable objectives when choosing their route: the travel time and the suitability of a route. By suitability we mean non-subjective factors that characterise the suitability of a route for cycling, including safety, traffic volumes, traffic speeds, presence of bicycle lanes, whether the terrain is flat or hilly, etc. While these incommensurable objectives are difficult to be combined into a single objective, it is also important to take into account that each individual cyclist may prioritise differently between travel time and suitability when they choose a route.This paper proposes a novel model to determine the route choice set of commuter cyclists by formulating a bi-objective routing problem. The two objectives considered are travel time and suitability of a route for cycling. Rather than determining a single route for a cyclist, we determine a choice set of optimal alternative routes (efficient routes) from which a cyclist may select one according to their personal preference depending on their perception of travel time versus other route choice criteria considered in the suitability index. This method is then implemented in a case study in Auckland, New Zealand.The study provides a starting point for the trip assignment of cyclists, and with further research, the bi-objective routing model developed can be applied to create a complete travel demand forecast model for cycle trips. We also suggest the application of the developed methodology as an algorithm in an interactive route finder to suggest efficient route choices at different levels of suitability to cyclists and potential cyclists.  相似文献   

2.
Real-time traffic information is increasingly available to support route choice decisions by reducing the travel time uncertainty. However it is likely that a traveler cannot assess all available information on all alternative routes due to time constraints and limited cognitive capacity. This paper presents a model that is consistent with a general network topology and can potentially be estimated based on revealed preference data. It explicitly takes into account the information acquisition and the subsequent path choice. The decision to acquire information is assumed to be based on the cognitive cost involved in the search and the expected benefit defined as the expected increase in utility after the search. A latent class model is proposed, where the decision to search or not to search and the depth of the search are latent and only the final path choices are observed. A synthetic data set is used for the purpose of validation and ease of illustration. The data are generated from the postulated cognitive-cost model, and estimation results show that the true values of the parameters can be recovered with enough variability in the data. Two other models with simplifying assumptions of no information and full information are also estimated with the same set of data with significantly biased path choice utility parameters. Prediction results show that a smaller cognitive cost encourages information search on risky and fast routes and thus higher shares on those routes. As a result, the expected average travel time decreases and the variability increases. The no-information and full-information models are extreme cases of the more general cognitive-cost model in some cases, but not generally so, and thus the increasing ease of information acquisition does not necessarily warrant a full-information model.  相似文献   

3.
In this paper, we extend the α-reliable mean-excess traffic equilibrium (METE) model of Chen and Zhou (Transportation Research Part B 44(4), 2010, 493-513) by explicitly modeling the stochastic perception errors within the travelers’ route choice decision processes. In the METE model, each traveler not only considers a travel time budget for ensuring on-time arrival at a confidence level α, but also accounts for the impact of encountering worse travel times in the (1 − α) quantile of the distribution tail. Furthermore, due to the imperfect knowledge of the travel time variability particularly in congested networks without advanced traveler information systems, the travelers’ route choice decisions are based on the perceived travel time distribution rather than the actual travel time distribution. In order to compute the perceived mean-excess travel time, an approximation method based on moment analysis is developed. It involves using the conditional moment generation function to derive the perceived link travel time, the Cornish-Fisher Asymptotic Expansion to estimate the perceived travel time budget, and the Acerbi and Tasche Approximation to estimate the perceived mean-excess travel time. The proposed stochastic mean-excess traffic equilibrium (SMETE) model is formulated as a variational inequality (VI) problem, and solved by a route-based solution algorithm with the use of the modified alternating direction method. Numerical examples are also provided to illustrate the application of the proposed SMETE model and solution method.  相似文献   

4.
Abstract

This paper investigates the effect of travel time variability on drivers' route choice behavior in the context of Shanghai, China. A stated preference survey is conducted to collect drivers' hypothetical choice between two alternative routes with designated unequal travel time and travel time variability. A binary choice model is developed to quantify trade-offs between travel time and travel time variability across various types of drivers. In the model, travel time and travel time variability are, respectively, measured by expectation and standard deviation of random travel time. The model shows that travel time and travel time variability on a route exert similarly negative effects on drivers' route choice behavior. In particular, it is found that middle-age drivers are more sensitive to travel time variability and less likely to choose a route with travel time uncertainty than younger and elder drivers. In addition, it is shown that taxi drivers are more sensitive to travel time and more inclined to choose a route with less travel time. Drivers with rich driving experience are less likely to choose a route with travel time uncertainty.  相似文献   

5.
Travel time, travel time reliability and monetary cost have been empirically identified as the most important criteria influencing route choice behaviour. We concentrate on travel time and travel time reliability and review two prominent user equilibrium models incorporating these two factors. We discuss some shortcomings of these models and propose alternative bi-objective user equilibrium models that overcome the shortcomings. Finally, based on the observation that both models use standard deviation of travel time within their measure of travel time reliability, we propose a general travel time reliability bi-objective user equilibrium model. We prove that this model encompasses those discussed previously and hence forms a general framework for the study of reliability related user equilibrium. We demonstrate and validate our concepts on a small three-link example.  相似文献   

6.
Understanding travellers’ behaviour is key element in transportation planning. This article presents a route choice model for metro networks that considers different time components as well as variables related to the transferring experience, train crowding, network topology and socio-demographic characteristics. The route choice model is applied to the London Underground and Santiago Metro networks, to make a comparison of the decision making process of the users on both cities. As all the variables are statistically significant, it is possible to affirm that public transport users take into account a wide variety of elements when choosing routes. While in London the travellers prefer to spend time walking, in Santiago is preferable to spend time waiting. Santiago Metro users are more willing to travel in crowded trains than London Underground users. Both user groups have a similar dispreference to transfers after controlling for the time spent on transfer, but different attitudes to ascending and descending transfers. Topological factors presented on a distorted Metro map are more important than actual topology to passengers’ route choice decisions.  相似文献   

7.
The Wardrop user equilibrium model states that travelers choose the fastest available route and always choose the same route on repeated trips. However, travelers are not always capable of choosing the fastest route, and if travel time is uncertain, they may acquire information on the day of travel that helps to select a better route. Thus, travelers can reduce their travel time over the Wardrop “optimum” by selecting routes adaptively. The focus of this paper is to find the most promising approach for improving actual transit route choice through providing better traveler information. Actual and ideal travel time were estimated for each of six information scenarios, ranging from one where travelers use transit maps, to one where travelers use adaptive route choice, and to the hypothetical situation referred to as perfect information. Travelers using maps and travelers using maps and schedules took significantly longer than ideally possible on an experimental trip (24% longer with maps, 42% longer with maps and schedules). Ideal travel time under perfect information was 49% less than actual travel time with no information, and 6% less than that of the best non-adaptive decision rule. Time adaptive route choice resulted in no travel time reduction. The potential travel time improvement from giving travelers more information was not as great as that from making information more understandable. Adaptive route choice did not offer great potential on the studied trip. To be effective there must be several nearly equal route options, and trips must involve transfers, which excludes most travel on transit today.  相似文献   

8.
Recent empirical studies have revealed that travel time variability plays an important role in travelers' route choice decisions. To simultaneously account for both reliability and unreliability aspects of travel time variability, the concept of mean‐excess travel time (METT) was recently proposed as a new risk‐averse route choice criterion. In this paper, we extend the mean‐excess traffic equilibrium model to include heterogeneous risk‐aversion attitudes and elastic demand. Specifically, this model explicitly considers (1) multiple user classes with different risk‐aversions toward travel time variability when making route choice decisions under uncertainty and (2) the elasticity of travel demand as a function of METT when making travel choice decisions under uncertainty. This model is thus capable of modeling travelers' heterogeneous risk‐averse behaviors with both travel choice and route choice considerations. The proposed model is formulated as a variational inequality problem and solved via a route‐based algorithm using the modified alternating direction method. Numerical analyses are also provided to illustrate the features of the proposed model and the applicability of the solution algorithm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Most of existing route guidance strategies achieves user optimal equilibrium by comparing travel time. Measuring travel time, however, might be uneasy on an urban road network. To contend with the issue, the paper mainly considers easily obtained inflow and outflow of a link and road capacity as input, and proposes a route guidance strategy for a single destination road network based on the determination of free-flow or congested conditions on alternative routes. An extended strategy for a complex network and a feedback approximation for avoiding forecast are further explored. Weaknesses of the strategy are also explicitly analyzed. To test the strategy, simulation investigations are conducted on two networks with multiple parallel routes. The results indicate that the strategy is able to provide stable splitting rates and to approximate user optimal equilibrium in different conditions, in particular when traffic demand is high. This strategy has potential to be applied in an urban road network due to its simplicity and easily obtained input data. The strategy is also applicable for single destination if some alternatives and similar routes are available.  相似文献   

10.
11.
In this study, to incorporate realistic discrete stochastic capacity distribution over a large number of sampling days or scenarios (say 30–100 days), we propose a multi-scenario based optimization model with different types of traveler knowledge in an advanced traveler information provision environment. The proposed method categorizes commuters into two classes: (1) those with access to perfect traffic information every day, and (2) those with knowledge of the expected traffic conditions (and related reliability measure) across a large number of different sampling days. Using a gap function framework or describing the mixed user equilibrium under different information availability over a long-term steady state, a nonlinear programming model is formulated to describe the route choice behavior of the perfect information (PI) and expected travel time (ETT) user classes under stochastic day-dependent travel time. Driven by a computationally efficient algorithm suitable for large-scale networks, the model was implemented in a standard optimization solver and an open-source simulation package and further applied to medium-scale networks to examine the effectiveness of dynamic traveler information under realistic stochastic capacity conditions.  相似文献   

12.
Due to the limited cruising range of battery electric vehicle (BEV), BEV drivers show obvious difference in travel behavior from gasoline vehicle (GV) drivers. To analyze BEV drivers’ charging and route choice behaviors, and extract the differences between BEV and GV drivers’ travel behavior, two multinomial logit-based and two nested logit-based models are proposed in this study based on a stated preference survey. The nested structure consists of two levels: the upper level represents the charging decision, and the lower level shows the route choices corresponding to the charging and no-charging situations respectively. The estimated results demonstrate that the nested structure is more appropriate than the multinomial structure. Meanwhile, it is observed that the initial state of charge (SOC) at origin of BEV is the most important factor that affects the decision of charging or not, and the SOC at destination becomes an important impact factor affecting BEV drivers’ route choice behavior. As for the route choice behavior when BEV has charging demand, the charging station attributes such as charging time and charging station’s location have significant influences on BEV drivers’ decision-making process. The results also show that BEV drivers incline to choose the routes with charging station having less charging time, being closer to origin and consistent with travel direction. Finally, based on the proposed models, a series of numerical analysis has been conducted to verify the effect of range anxiety on BEV charging and route choice behavior and to reveal the variation of comfortable initial SOC at origin with travel distance. Meanwhile, the effects of charging time and distance from origin to charging station also have been discussed.  相似文献   

13.
Suppose that in an urban transportation network there is a specific advanced traveler information system (ATIS) which acts for reducing the drivers' travel time uncertainty through provision of pre‐trip route information. Because of the imperfect information provided, some travelers are not in compliance with the ATIS advice although equipped with the device. We thus divide all travelers into three groups, one group unequipped with ATIS, another group equipped and in compliance with ATIS advice and the third group equipped but without compliance with the advice. Each traveler makes route choice in a logit‐based manner and a stochastic user equilibrium with multiple user classes is reached for every day. In this paper, we propose a model to investigate the evolutions of daily path travel time, daily ATIS compliance rate and yearly ATIS adoption, in which the equilibrium for every day's route choice is kept. The stability of the evolution model is initially analyzed. Numerical results obtained from a test network are presented for demonstrating the model's ability in depicting the day‐to‐day and year‐to‐year evolutions.  相似文献   

14.
Previous route choice studies treated uncertainties as randomness; however, it is argued that other uncertainties exist beyond random effects. As a general modeling framework for route choice under uncertainties, this paper presents a model of route choice that incorporates hyperpath and network generalized extreme-value-based link choice models. Accounting for the travel time uncertainty, numerical studies of specified models within the proposed framework are conducted. The modeling framework may be helpful in various research contexts dealing with both randomness and other non-probabilistic uncertainties that cannot be exactly perceived.  相似文献   

15.
Recent empirical studies on the value of time and reliability reveal that travel time variability plays an important role on travelers' route choice decision process. It can be considered as a risk to travelers making a trip. Therefore, travelers are not only interested in saving their travel time but also in reducing their risk. Typically, risk can be represented by two different aspects: acceptable risk and unacceptable risk. Acceptable risk refers to the reliability aspect of acceptable travel time, which is defined as the average travel time plus the acceptable additional time (or buffer time) needed to ensure more frequent on‐time arrivals, while unacceptable risk refers to the unreliability aspect of unacceptable late arrivals (though infrequent) that have a travel time excessively higher than the acceptable travel time. Most research in the network equilibrium based approach to modeling travel time variability ignores the unreliability aspect of unacceptable late arrivals. This paper examines the effects of both reliability and unreliability aspects in a network equilibrium framework. Specifically, the traditional user equilibrium model, the demand driven travel time reliability‐based user equilibrium model, and the α‐reliable mean‐excess travel time user equilibrium model are considered in the investigation under an uncertain environment due to stochastic travel demand. Numerical results are presented to examine how these models handle risk under travel time variability.  相似文献   

16.
17.
This paper proposes an integrated Bayesian statistical inference framework to characterize passenger flow assignment model in a complex metro network. In doing so, we combine network cost attribute estimation and passenger route choice modeling using Bayesian inference. We build the posterior density by taking the likelihood of observing passenger travel times provided by smart card data and our prior knowledge about the studied metro network. Given the high-dimensional nature of parameters in this framework, we apply the variable-at-a-time Metropolis sampling algorithm to estimate the mean and Bayesian confidence interval for each parameter in turn. As a numerical example, this integrated approach is applied on the metro network in Singapore. Our result shows that link travel time exhibits a considerable coefficient of variation about 0.17, suggesting that travel time reliability is of high importance to metro operation. The estimation of route choice parameters conforms with previous survey-based studies, showing that the disutility of transfer time is about twice of that of in-vehicle travel time in Singapore metro system.  相似文献   

18.
With the approach of introducing the conceptions of mental account and mental budgeting into the process of travelers’ route choice, we try to identify why the usages of tolled roads are often overestimated. Assuming that every traveler sets a mental account for his/her travel to keep track of their expense and keep out-of-pocket spending under control, it addresses these questions such that “How much money can I spend on the travel?” and “What if I spend too much?”. Route tolls that exceed the budget are much more unacceptable compared to those within budget due to the non-fungibility of money between different accounts. A simple network with two nodes and two routes is analyzed firstly, the analytical solutions are obtained and the optimal road tolls supporting the user equilibrium as a system optimum are also derived. The proposed model is then extended to a generalized network. The multiclass user equilibrium conditions with travel mental budgeting are formulated into an equivalent variational inequality (VI) problem and an equivalent minimization problem. Through analyses with numerical examples, it is found that the main reason that the usages of high tolled roads are often overestimated is due to the fact that travelers with low and moderate out-of-pocket travel budget perceive a much higher travel cost than their actual cost on the high tolled roads.  相似文献   

19.
This study investigates the routing aspects of battery electric vehicle (BEV) drivers and their effects on the overall traffic network performance. BEVs have unique characteristics such as range limitation, long battery recharging time, and recuperation of energy lost during the deceleration phase if equipped with regenerative braking system (RBS). In addition, the energy consumption rate per unit distance traveled is lower at moderate speed than at higher speed. This raises two interesting questions: (i) whether these characteristics of BEVs will lead to different route selection compared to conventional internal combustion engine vehicles (ICEVs), and (ii) whether such route selection implications of BEVs will affect the network performance. With the increasing market penetration of BEVs, these questions are becoming more important. This study formulates a multi-class dynamic user equilibrium (MCDUE) model to determine the equilibrium flows for mixed traffic consisting of BEVs and ICEVs. A simulation-based solution procedure is proposed for the MCDUE model. In the MCDUE model, BEVs select routes to minimize the generalized cost which includes route travel time, energy related costs and range anxiety cost, and ICEVs to minimize route travel time. Results from numerical experiments illustrate that BEV drivers select routes with lower speed to conserve and recuperate battery energy while ICEV drivers select shortest travel time routes. They also illustrate that the differences in route choice behavior of BEV and ICEV drivers can synergistically lead to reduction in total travel time and the network performance towards system optimum under certain conditions.  相似文献   

20.
A dynamic traffic assignment (DTA) model typically consists of a traffic performance model and a route choice model. The traffic performance model describes how traffic propagates (over time) along routes connecting origin-destination (OD) pairs, examples being the cell transmission model, the vertical queueing model and the travel time model. This is implemented in a dynamic network loading (DNL) algorithm, which uses the given route inflows to compute the link inflows (and hence link costs), which are then used to compute the route travel times (and hence route costs). A route swap process specifies the route inflows for tomorrow (at the next iteration) based on the route inflows today (at the current iteration). A dynamic user equilibrium (DUE), where each traveller on the network cannot reduce his or her cost of travel by switching to another route, can be sought by iterating between the DNL algorithm and the route swap process. The route swap process itself takes up very little computational time (although route set generation can be very computationally intensive for large networks). However, the choice of route swap process dramatically affects convergence and the speed of convergence. The paper details several route swap processes and considers whether they lead to a convergent system, assuming that the route cost vector is a monotone function of the route inflow vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号