首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Patterns of traffic activity, including changes in the volume and speed of vehicles, vary over time and across urban areas and can substantially affect vehicle emissions of air pollutants. Time-resolved activity at the street scale typically is derived using temporal allocation factors (TAFs) that allow the development of emissions inventories needed to predict concentrations of traffic-related air pollutants. This study examines the spatial and temporal variation of TAFs, and characterizes prediction errors resulting from their use. Methods are presented to estimate TAFs and their spatial and temporal variability and used to analyze total, commercial and non-commercial traffic in the Detroit, Michigan, U.S. metropolitan area. The variability of total volume estimates, quantified by the coefficient of variation (COV) representing the percentage departure from expected hourly volume, was 21%, 33%, 24% and 33% for weekdays, Saturdays, Sundays and holidays, respectively. Prediction errors mostly resulted from hour-to-hour variability on weekdays and Saturdays, and from day-to-day variability on Sundays and holidays. Spatial variability was limited across the study roads, most of which were large freeways. Commercial traffic had different temporal patterns and greater variability than non-commercial vehicle traffic, e.g., the weekday variability of hourly commercial volume was 28%. The results indicate that TAFs for a metropolitan region can provide reasonably accurate estimates of hourly vehicle volume on major roads. While vehicle volume is only one of many factors that govern on-road emission rates, air quality analyses would be strengthened by incorporating information regarding the uncertainty and variability of traffic activity.  相似文献   

2.
Cost-benefit analysis is a tool in government decision-making for determining the consequences of alternative uses of society’s scarce resources. Such a systematic process of comparing benefits and costs was adopted in early years for transportation projects and it has been the subject of much refining over the years. There are still some flaws, however, in the application of the method. In this article we have studied the impact of weather conditions on traffic speed on low traffic roads often exposed to adverse weather. This is an issue not currently considered in the cost-benefit analysis of road projects. By using two analytical approaches—structural equation modelling and classification and regression tree analysis—the impact of the weather indicators temperature, wind speed, and precipitation on traffic speed has been quantified. The data relates to three winter months on the European Route 6 road over the mountain pass Saltfjellet in Norway. Increase in wind speed, increase in precipitation and temperatures around freezing point all caused significant decrease in traffic speed in the case studied. If actions were taken to reduce the impact of adverse weather on traffic (e.g. by building a tunnel through the mountain) this study indicates that the road users would gain a total benefit of approximately 2,348,000 NOK (282,000 EUR) each winter at Saltfjellet if all the weather related benefits were included. We argue that this is a significant number that is highly relevant to include in CBAs. This applies both to the CBAs of new transportation projects as well as when resources are allocated for operation, maintenance, and monitoring of the existing transport systems. Including the weather related benefits would improve the application of CBA as a decision-making tool for policy makers.  相似文献   

3.
Diurnal cycles of ground-level ozone and its precursor NOx concentrations stem from and reflect complex temporal patterning of many underlying factors, including transportation emissions. Investigating the complexity of diurnal ozone/NOx cycles at a finer temporal resolution allows a better understanding of ozone dynamics and helps in designing ozone control strategies. This study applied functional data analysis techniques to hourly resolved ozone and NOx measurement data from the 1997 Southern California Ozone Study. Functional analysis of variance on diurnal ozone/NOx cycles for urban and rural monitoring sites confirmed, in a new continuous functional form, the ozone weekend effect. Functional data analysis also allows for a direct examination of day-of-week effects on ozone formation/destruction rates. Comparisons of Sunday ozone rates to those on weekdays demonstrate earlier, faster, and longer duration of ozone accumulation on Sunday. The results are further interpreted from the transportation emissions perspective using hourly resolved weigh-in-motion traffic data.  相似文献   

4.
This study proposes a microscopic pedestrian simulation model for evaluating pedestrian flow. Recently, several pedestrian models have been proposed to evaluate pedestrian flow in crowded situations for the purpose of designing facilities. However, current pedestrian simulation models do not explain the negotiation process of collision avoidance between pedestrians, which can be important for representing pedestrian behaviour in congested situations. This study builds a microscopic model of pedestrian behaviour using a two-player game and assuming that pedestrians anticipate movements of other pedestrians so as to avoid colliding with them. A macroscopic tactical model is also proposed to determine a macroscopic path to a given destination. The results of the simulation model are compared with experimental data and observed data in a railway station. Several characteristics of pedestrian flows such as traffic volume and travel time in multidirectional flows, temporal–spatial collision avoidance behaviour and density distribution in the railway station are reproduced in the simulation.  相似文献   

5.
In traffic-crowded metropolitan areas, such as Shanghai and Beijing in China, right-turn vehicles that operate with a permitted phase at signalized intersections are normally permitted to filter through large numbers of pedestrians and bicycles. To alleviate such conflicts and improve safety, traffic engineers in Shanghai introduced a prohibited–permitted right-turn operation, adding a subphase to the permitted phase in which right-turns are prohibited. Unfortunately, the prohibited subphase would reduce the capacity of right-turn movements when it prohibits right turns even if there are few pedestrians and bicycles crossing the street. This paper aims at quantifying the impact of both non-vehicular flows and the prohibited subphase on the right-turn capacity, and then proposes a strategy to determine appropriate prohibited–permitted right-turn operation that minimizes the capacity reduction caused by the prohibited subphase. To achieve this goal, we improved the pedestrian and bicycle adjustment factor described in the Highway Capacity Manual by taking into account: (1) the variety in space competition between pedestrians and bicycles, and (2) the effect of two conflict zones in each phase on right-turn operation. In addition, we revised the capacity estimation model in the Highway Capacity Manual, and developed a model based on bicycle/pedestrian volume fluctuation to describe the capacity reduction due to both non-vehicular flows and the prohibited subphase. Furthermore, we proposed a timing strategy for the onset and duration of appropriate prohibited subphase. When bicycle and pedestrian volumes are low, the actuated strategy turns to the permitted phase. When these volumes are moderate, the strategy turns to the prohibited–permitted operation. With the volumes increasing, the prohibited subphase onset advances and duration increases. In these two scenarios, the new strategy has higher right-turn capacity than the current pretimed prohibited–permitted operation. Unfortunately, when bicycle and pedestrian volumes are high, the strategy yields similar right-turn capacity. However, the new prohibited subphase has less potential vehicle–bicycle and vehicle–pedestrian conflicts.  相似文献   

6.
Traffic flow pattern identification, as well as anomaly detection, is an important component for traffic operations and control. To reveal the characteristics of regional traffic flow patterns in large road networks, this paper employs dictionary-based compression theory to identify the features of both spatial and temporal patterns by analyzing the multi-dimensional traffic-related data. An anomaly index is derived to quantify the network traffic in both spatial and temporal perspectives. Both pattern identifications are conducted in three different geographic levels: detector, intersection, and sub-region. From different geographic levels, this study finds several important features of traffic flow patterns, including the geographic distribution of traffic flow patterns, pattern shifts at different times-of-day, pattern fluctuations over different days, etc. Both spatial and temporal traffic flow patterns defined in this study can jointly characterize pattern changes and provide a good performance measure of traffic operations and management. The proposed method is further implemented in a case study for the impact of a newly constructed subway line. The before-and-after study identifies the major changes of surrounding road traffic near the subway stations. It is found that new metro stations attract more commute traffic in weekdays as well as entertaining traffic during weekends.  相似文献   

7.
The existing literature on urban transportation planning in China focuses primarily on large cities and neglects small cities. This paper aims to fill part of the knowledge gap by examining travel mode choice in Changting, a small city that has been experiencing fast spatial expansion and growing transportation problems. Using survey data collected from 1470 respondents on weekdays and weekends, the study investigates the relationship between mode choice and individuals’ socio-economic characteristics, trip characteristics, attitudes, and home and workplace built environments. While more than 35 percent of survey respondents are car owners, walk, bicycle, e-bike, and motorcycle still account for over 85 percent of trips made during peak hours. E-bike and motorcycle are the dominant means of travel on weekdays, but many people shift to walking and cycling on weekends, making non-motorized and semi-motorized travel especially important for non-commuting trips. Results of multinomial logistic regression show that: (1) job-housing balance might exert different effects on mode choice in different types of urban areas; (2) negative attitude towards e-bike and motorcycle is associated with more walking and cycling; and (3) land use diversity of workplace is related to commuting mode choice on weekdays, while land use diversities of both residential and activity places do not significantly affect mode choice on weekends. Our findings imply that planning and design for small cities needs to differentiate land use and transportation strategies in various types of areas, and to launch outreach programs to shift people’s mode choice from motorized travel to walking and cycling.  相似文献   

8.
Choices of travel mode and trip chain as well as their interplays have long drawn the interests of researchers. However, few studies have examined the differences in the travel behaviors between holidays and weekdays. This paper compares the choice of travel mode and trip chain between holidays and weekdays tours using travel survey data from Beijing, China. Nested Logit (NL) models with alternative nesting structures are estimated to analyze the decision process of travelers. Results show that there are at least three differences between commuting-based tours on weekdays and non-commuting tours on holidays. First, the decision structures in weekday and holiday tours are opposite. In weekday tours people prefer to decide on trip chain pattern prior to choosing travel mode, whereas in holiday tours travel mode is chosen first. Second, holiday tours show stronger dependency on cars than weekday tours. Third, travelers on holidays are more sensitive to changes in tour time than to the changes in tour cost, while commuters on weekdays are more sensitive to tour cost. Findings are helpful for improving travel activity modeling and designing differential transportation system management strategies for weekdays and holidays.  相似文献   

9.
In this paper, we estimate the effects of weather conditions such as wind, temperature and precipitation on railway operator performance of passenger train services. We distinguish between the direct effects of weather conditions and the indirect effects through disturbances in infrastructure. We show that certain types of bad weather mainly affect train operators’ performance indirectly, through their effect on infrastructure. Furthermore, we show that the welfare losses for passengers confronted with increased cancellations of trains and decreased punctuality in The Netherlands due to one standard deviation increase in infrastructure disruptions amount to about €80 million per year.  相似文献   

10.
Cycling is attracting renewed attention as a mode of transport in western urban environments, yet the determinants of usage are poorly understood. In this paper we investigate some of these using intraday bicycle volumes collected via induction loops located at ten bike paths in the city of Melbourne, Australia, between December 2005 and June 2008. The data are hourly counts at each location, with temporal and spatial disaggregation allowing for the impact of meteorology to be measured accurately for the first time. Moreover, during this period petrol prices varied dramatically and the data also provide a unique opportunity to assess the cross-price elasticity of demand for cycling. Over-dispersed Poisson regression models are used to model volumes at each location and at each hour of the day. Seasonality and the impact of weather conditions are modelled as semiparametric and estimated using recently developed multivariate penalized spline methodology. Unlike previous studies that use aggregate data, the empirical results show a substantial meteorological and seasonal component to usage. They also suggest there was substitution into cycling as a mode of transport in response to increases in petrol prices, particularly during peak commuting periods and by commuters originating in wealthy and inner city neighbourhoods. Last, we extend the approach to a multivariate longitudinal count data model using a Gaussian copula estimated by Bayesian data augmentation. We find first order serial dependence in the hourly volumes and a ‘return trip’ effect in daily bicycle commutes.  相似文献   

11.
《运输规划与技术》2012,35(8):825-847
ABSTRACT

In recent years, public transport has been developing rapidly and producing large amounts of traffic data. Emerging big data-mining techniques enable the application of these data in a variety of ways. This study uses bus intelligent card (IC card) data and global positioning system (GPS) data to estimate passenger boarding and alighting stations. First, an estimation model for boarding stations is introduced to determine passenger boarding stations. Then, the authors propose an innovative uplink and downlink information identification model (UDI) to generate information for estimating alighting stations. Subsequently, the estimation model for the alighting stations is introduced. In addition, a transfer station identification model is also developed to determine transfer stations. These models are applied to Yinchuan, China to analyze passenger flow characteristics and bus operations. The authors obtain passenger flows based on stations (stops), bus lines, and traffic analysis zones (TAZ) during weekdays and weekends. Moreover, average bus operational speeds are obtained. These findings can be used in bus network planning and optimization as well as bus operation scheduling.  相似文献   

12.
Bicycle usage can be affected by colder weather, precipitation, and excessive heat. The research presented here analyzes the effect of weather on the use of the Washington, DC, bikeshare system, exploiting a dataset of all trips made on the system. Hourly weather data, including temperature, rainfall, snow, wind, fog, and humidity levels are linked to hourly usage data. Statistical models linking both number of users and duration of use are estimated. Further, we evaluate trips from bikeshare stations within one quarter mile of Metro (subway) stations at times when Metro is operating. This allows us to determine whether Metro serves as a back-up option when weather conditions are unfavorable for bicycling. Results show that cold temperatures, rain, and high humidity levels reduce both the likelihood of using bikeshare and the duration of trips. Trips taken from bikeshare stations proximate to Metro stations are affected more by rain than trips not proximate to Metro stations and less likely when it is dark. This information is useful for understanding bicycling behavior and also for those planning bikeshare systems in other cities.  相似文献   

13.
Joint household travel, with or without joint participation in an activity, constitutes a fundamental aspect in modelling activity-based travel behaviour. This paper examines joint household travel arrangements and mode choices using a utility maximising approach. An individual tour-based mode choice model is formulated contingent on the choice of joint tour patterns where joint household activities and shared ride arrangements are recognised as part of the joint household decision-making that influences the travel modes of each household member. Two models, one for weekend and one for weekday, are estimated using empirical data from the Sydney Household Travel Survey. The results show that weekend travel is characterised by a high joint household activity participation rate while weekday travel is distinguished by more intra-household shared ride arrangements. The arrangements of joint household travel are highly associated with travel purpose, social and mobility constraints and household resources. On weekends, public transport is mainly used by captive users (i.e., no-car households and students) and its share is about half of that on weekdays. Also, the value of travel time savings (VOTs) are found to be higher on weekends than on weekdays, running entirely counter to the common belief that weekend VOTs are lower than weekday VOTs. This paper highlights the importance of studying joint household travel and using different transport management measures for alleviating traffic congestion on weekdays and weekends.  相似文献   

14.
Abstract

Trip chaining (or tours) and mode choice are two critical factors influencing a variety of patterns of urban travel demand. This paper investigates the hierarchical relationship between these two sets of decisions including the influences of socio-demographic characteristics on them. It uses a 6-week travel diary collected in Thurgau, Switzerland, in 2003. The structural equation modeling technique is applied to identify the hierarchical relationship. Hierarchy and temporal consistency of the relationship is investigated separately for work versus non-work tours. It becomes clear that for work tours in weekdays, trip-chaining and mode choice decisions are simultaneous and remain consistent across the weeks. For non-work tours in weekdays, mode choice decisions precede trip-chaining decisions. However, for non-work tours in weekends, trip-chaining decisions precede mode choice decisions. A number of socioeconomic characteristics also play major roles in influencing the relationships. Results of the investigation challenge the traditional approach of modeling mode choice separately from activity-scheduling decisions.  相似文献   

15.
A substantial body of research is focused on understanding the relationships between socio-demographics, land-use characteristics, and mode specific attributes on travel mode choice and time-use patterns. Residential and commercial densities, inter-mixing of land uses, and route directness in conjunction with transportation performance characteristics interact to influence accessibility to destinations as well as time spent traveling and engaging in activities. This study uniquely examines the activity durations undertaken for out-of-home subsistence; maintenance, and discretionary activities. Also examined are total tour durations (summing all activity categories within a tour). Cross-sectional activities are obtained from household activity travel survey data from the Atlanta Metropolitan Region. Time durations allocated to weekdays and weekends are compared. The censoring and endogeneity between activity categories and within individuals are captured using multiple equations Tobit models.The analysis and modeling reveal that land-use characteristics such as net residential density and the number of commercial parcels within a kilometer of a residence are associated with differences in weekday and weekend time-use allocations. Household type and structure are significant predictors across the three activity categories, but not for overall travel times. Tour characteristics such as time-of-day and primary travel mode of the tours also affect traveler’s out-of-home activity-tour time-use patterns.  相似文献   

16.
A macroscopic loading model applicable to time-dependent and congested pedestrian flows in public walking areas is proposed. Building on the continuum theory of pedestrian flows and the cell transmission model for car traffic, an isotropic framework is developed that can describe the simultaneous and potentially conflicting propagation of multiple pedestrian groups. The model is formulated at the aggregate level and thus computationally cheap, which is advantageous for studying large-scale problems. A detailed analysis of several basic flow patterns including counter- and cross flows, as well as two generic scenarios involving a corner- and a bottleneck flow is carried out. Various behavioral patterns ranging from disciplined queueing to impatient jostling can be realistically reproduced. Following a systematic model calibration, two case studies involving a Swiss railway station and a Dutch bottleneck flow experiment are presented. A comparison with the social force model and pedestrian tracking data shows a good performance of the proposed model with respect to predictions of travel time and density.  相似文献   

17.
The ozone weekend effect refers to the counterintuitive observations showing weekend ozone concentrations frequently to be higher than or comparable to those observed on weekdays. Ozone dynamics are closely linked to the timing, magnitude and fleet mix of transportation activities, primary sources of ozone precursor emissions. To examine the effects of traffic activity on the ozone weekend effect, a statistical analysis was conducted of the weekly patterns of time dependent light-duty vehicle and heavy-duty truck volumes observed at 27 weigh-in-motion stations in southern California. The results show statistically significant variations in traffic flows by day of week, by vehicle type, and by location with respect to the Los Angeles metropolitan area. These variations in traffic, when converted to variations in running exhaust emissions, tend to support four of the seven California Air Resources Board’s ozone weekend effect hypotheses.  相似文献   

18.
The system considered is a cinema ticketing booth system. A general simulation algorithm is presented as well as the system’s operating characteristics. The results of the experiment were verified by comparing them with video observation data and theoretical values. Finally, with comparative analysis of experiment data, the developed simulation model was able to replicate the situation in which pedestrians find an available booth to occupy while waiting in a queue. The model can facilitate the availability of various pedestrian flows and a range of operating times. With some efforts of computer programming, the situations where multiple booths are available were simulated to identify pedestrian movement. The developed simulation model captures important details, such as travel time, wait time, queue length and the number of waiting pedestrians with the different number of pedestrian flows and booths. The paper presents a means to designing the pedestrian operation and plan on the basis of the estimated number of people.  相似文献   

19.
The commonly used photochemical air quality model, the Urban Airshed Model (UAM), requires emission estimates with grid-based, hourly resolution. In contrast, travel demand models, used to simulate the travel activity model inputs for the transportation-related emissions estimation, typically only provide traffic volumes for a specific travel period (e.g. the a.m. and p.m. peak periods). A few transportation agencies have developed procedures to allocate period-based travel demand data into hourly emission inventories for regional grid cells. Because there was no theoretical framework for disaggregating period-based volumes to hourly volumes, application of these procedures frequently relied upon a single hypothetical hourly distribution of travel volumes. This study presents a new theoretical modeling framework that integrates traffic count data and travel demand model link volume estimates to derive intra-period hourly volume estimates by trip purpose. We propose a new interpretation of the model coefficients and define hourly allocation factors by trip purpose. These allocation factors can be used to disaggregate the travel demand model ‘period-based’ simulation volumes into hourly resolution, thereby improving grid-based, hourly emission estimates in the UAM.  相似文献   

20.
Understanding travel behaviour change under various weather conditions can help analysts and policy makers incorporate the uniqueness of local weather and climate within their policy design, especially given the fact that future climate and weather will become more unpredictable and adverse. Using datasets from the Swedish National Travel Survey and the Swedish Meteorological and Hydrological Institute that spans a period of thirteen years, this study explores the impacts of weather variability on individual activity–travel patterns. In doing so, this study uses an alternative representation of weather from that of directly applying observed weather parameters. Furthermore, this study employs a holistic model structure. The model structure is able to analyse the simultaneous effects of weather on a wide range of interrelated travel behavioural aspects, which has not been investigated in previous weather studies. Structural equation models (SEM) are applied for this purpose. The models for commuters and non-commuters are constructed separately. The analysis results show that the effects of weather can be even more extreme when considering indirect effects from other travel behaviour indicators involved in the decision-making processes. Commuters are shown to be much less sensitive to weather changes than non-commuters. Variation of monthly average temperature is shown to play a more important role in influencing individual travel behaviour than variation of daily temperature relative to its monthly mean, whilst in the short term, individual activity–travel choices are shown to be more sensitive to the daily variation of the relative humidity and wind speed relative to the month mean. Poor visibility and heavy rain are shown to strongly discourage the intention to travel, leading to a reduction in non-work activity duration, travel time and the number of trips on the given day. These findings depict a more comprehensive picture of weather impact compared to previous studies and highlight the importance of considering interdependencies of activity travel indicators when evaluating weather impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号