首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Traditionally, an assessment of transport network vulnerability is a computationally intensive operation. This article proposes a sensitivity analysis-based approach to improve computational efficiency and allow for large-scale applications of road network vulnerability analysis. Various vulnerability measures can be used with the proposed method. For illustrative purposes, this article adopts the relative accessibility index (AI), which follows the Hansen integral index, as the network vulnerability measure for evaluating the socio-economic effects of link (or road segment) capacity degradation or closure. Critical links are ranked according to the differences in the AIs between normal and degraded networks. The proposed method only requires a single computation of the network equilibrium problem. The proposed technique significantly reduces computational burden and memory storage requirements compared with the traditional approach. The road networks of the Sioux Falls city and the Bangkok metropolitan area are used to demonstrate the applicability and efficiency of the proposed method. Network manager(s) or transport planner(s) can use this approach as a decision support tool for identifying critical links in road networks. By improving these critical links or constructing new bypass roads (or parallel paths) to increase capacity redundancy, the overall vulnerability of the networks can be reduced.  相似文献   

2.
We present an approach to systematically analysing the vulnerability of road networks under disruptions covering extended areas. Since various kinds of events including floods, heavy snowfall, storms and wildfires can cause such spatially spread degradations, the analysis method is an important complement to the existing studies of single link failures. The methodology involves covering the study area with grids of uniformly shaped and sized cells, where each cell represents the extent of an event disrupting any intersecting links. We apply the approach to the Swedish road network using travel demand and network data from the Swedish national transport modelling system Sampers. The study shows that the impacts of area-covering disruptions are largely determined by the level of internal, outbound and inbound travel demand of the affected area itself. This is unlike single link failures, where the link flow and the redundancy in the surrounding network determine the impacts. As a result, the vulnerability to spatially spread events shows a markedly different geographical distribution. These findings, which should be universal for most road networks of similar scale, are important in the planning process of resource allocation for mitigation and recovery.  相似文献   

3.
Network risk assessment takes into consideration the probability that adverse events occur and the impacts of such disruptions on network functionality. In the context of transport networks, most studies have focused on vulnerability, the reduction in performance indicators given that a disruption occurs. This study presents and applies a method to explicitly account for exposure in identifying and evaluating link criticality in public transport networks. The proposed method is compared with conventional measures that lack exposure information. A criticality assessment is performed by accounting for the probability of a certain event occurring and the corresponding welfare loss. The methodology was applied for a multi-modal public transport network in the Netherlands where data concerning disruptions was available. The results expose the role of exposure in determining link criticality and overall network vulnerability. The findings demonstrate that disregarding exposure risks prioritizing links with high passenger volumes over links with a higher failure probability that are significantly more critical to network performance. The inclusion of exposure allows performing a risk analysis and has consequences on assessing mitigation measures and investment priorities.  相似文献   

4.
As one of the devastating natural disasters, landslide may induce significant losses of properties and lives area-wide, and generate dramatic damages to transportation network infrastructure. Accessing the impacts of landslide-induced disruptions to roadway infrastructure can be extremely difficult due to the complexity of involved impact factors and uncertainties of vulnerability related events. In this study, a data-driven approach is developed to assess landslide-induced transportation roadway network vulnerability and accessibility. The vulnerability analysis is conducted by integrating a series of static and dynamic factors to reflect the landslide likelihood and the consequences of network accessibility disruptions. The analytical hierarchy process (AHP) model was developed to assess and map the landslide likelihood. A generic vulnerability index (VI) was calculated for each roadway link in the network to identify critical links. Spatial distributions of landslide likelihood, consequences of network disruptions, and network vulnerability degrees were fused and analyzed. The roadway network on Oahu Island in Hawaii is utilized to demonstrate the effectiveness of the proposed approach with all the geo-coded information for its network vulnerability analysis induced by area-wide landslides. Specifically, the study area was classified into five categories of landslide likelihood: very high, high, moderate, low, and stable. About 34% of the study area was assigned as the high or very high categories. The results of network vulnerability analyses highlighted the importance of three highway segments tunnel through the Ko‘olau Range from leeward to windward, connecting Honolulu to the windward coast including the Pali highway segment, Likelike highway segment, and Interstate H-3 highway segment. The proposed network vulnerability analysis method provides a new perspective to examine the vulnerability and accessibility of the roadway network impacted by landslides.  相似文献   

5.
This article investigates two performance attributes of road networks, reliability and vulnerability, analyzing their similarities as well as the differences that justify distinct definitions, based on consolidation of recent studies. We also discuss the indicators found in the literature for these two performance attributes. Since various authors treat vulnerability as an aspect of reliability instead of a specific attribute, we carried out an application to a complex road network representative of the city of Rio de Janeiro to check the suitability of this approach. The results show that the vulnerability indicators are more strongly affected by the characteristics of alternative routes while the reliability metrics are more sensitive to the congestion level. The conclusion is that reliability and vulnerability should be treated distinctly for evaluating the performance of road network links.  相似文献   

6.
Robust public transport networks are important, since disruptions decrease the public transport accessibility of areas. Despite this importance, the full passenger impacts of public transport network vulnerability have not yet been considered in science and practice. We have developed a methodology to identify the most vulnerable links in the total, multi-level public transport network and to quantify the societal costs of link vulnerability for these identified links. Contrary to traditional single-level network approaches, we consider the integrated, total multi-level PT network in the identification and quantification of link vulnerability, including PT services on other network levels which remain available once a disturbance occurs. We also incorporate both exposure to large, non-recurrent disturbances and the impacts of these disturbances explicitly when identifying and quantifying link vulnerability. This results in complete and realistic insights into the negative accessibility impacts of disturbances. Our methodology is applied to a case study in the Netherlands, using a dataset containing 2.5 years of disturbance information. Our results show that especially crowded links of the light rail/metro network are vulnerable, due to the combination of relatively high disruption exposure and relatively high passenger flows. The proposed methodology allows quantification of robustness benefits of measures, in addition to the costs of these measures. Showing the value of robustness, our work can support and rationalize the decision-making process of public transport operators and authorities regarding the implementation of robustness measures.  相似文献   

7.
Public transport networks (PTN) are subject to recurring service disruptions. Most studies of the robustness of PTN have focused on network topology and considered vulnerability in terms of connectivity reliability. While these studies provide insights on general design principles, there is lack of knowledge concerning the effectiveness of different strategies to reduce the impacts of disruptions. This paper proposes and demonstrates a methodology for evaluating the effectiveness of a strategic increase in capacity on alternative PTN links to mitigate the impact of unexpected network disruptions. The evaluation approach consists of two stages: identifying a set of important links and then for each identified important link, a set of capacity enhancement schemes is evaluated. The proposed method integrates stochastic supply and demand models, dynamic route choice and limited operational capacity. This dynamic agent-based modelling of network performance enables to capture cascading network effects as well as the adaptive redistribution of passenger flows. An application for the rapid PTN of Stockholm, Sweden, demonstrates how the proposed method could be applied to sequentially designed scenarios based on their performance indicators. The method presented in this paper could support policy makers and operators in prioritizing measures to increase network robustness by improving system capacity to absorb unexpected disruptions.  相似文献   

8.
Many national governments around the world have turned their recent focus to monitoring the actual reliability of their road networks. In parallel there have been major research efforts aimed at developing modelling approaches for predicting the potential vulnerability of such networks, and in forecasting the future impact of any mitigating actions. In practice—whether monitoring the past or planning for the future—a confounding factor may arise, namely the potential for systematic growth in demand over a period of years. As this growth occurs the networks will operate in a regime closer to capacity, in which they are more sensitive to any variation in flow or capacity. Such growth will be partially an explanation for trends observed in historic data, and it will have an impact in forecasting too, where we can interpret this as implying that the networks are vulnerable to demand growth. This fact is not reflected in current vulnerability methods which focus almost exclusively on vulnerability to loss in capacity. In the paper, a simple, moment-based method is developed to separate out this effect of demand growth on the distribution of travel times on a network link, the aim being to develop a simple, tractable, analytic method for medium-term planning applications. Thus the impact of demand growth on the mean, variance and skewness in travel times may be isolated. For given critical changes in these summary measures, we are thus able to identify what (location-specific) level of demand growth would cause these critical values to be exceeded, and this level is referred to as Demand Growth Reliability Vulnerability (DGRV). Computing the DGRV index for each link of a network also allows the planner to identify the most vulnerable locations, in terms of their ability to accommodate growth in demand. Numerical examples are used to illustrate the principles and computation of the DGRV measure.  相似文献   

9.
Information on link flows in a vehicular traffic network is critical for developing long-term planning and/or short-term operational management strategies. In the literature, most studies to develop such strategies typically assume the availability of measured link traffic information on all network links, either through manual survey or advanced traffic sensor technologies. In practical applications, the assumption of installed sensors on all links is generally unrealistic due to budgetary constraints. It motivates the need to estimate flows on all links of a traffic network based on the measurement of link flows on a subset of links with suitably equipped sensors. This study, addressed from a budgetary planning perspective, seeks to identify the smallest subset of links in a network on which to locate sensors that enables the accurate estimation of traffic flows on all links of the network under steady-state conditions. Here, steady-state implies that the path flows are static. A “basis link” method is proposed to determine the locations of vehicle sensors, by using the link-path incidence matrix to express the network structure and then identifying its “basis” in a matrix algebra context. The theoretical background and mathematical properties of the proposed method are elaborated. The approach is useful for deploying long-term planning and link-based applications in traffic networks.  相似文献   

10.
The reliability and vulnerability of critical infrastructures have attracted a lot of attention recently. In order to assess these issues quantitatively, operational measures are needed. Such measures can also be used as guidance to road administrations in their prioritisation of maintenance and repair of roads, as well as for avoiding causing unnecessary disturbances in the planning of roadwork. The concepts of link importance and site exposure are introduced. In this paper, several link importance indices and site exposure indices are derived, based on the increase in generalised travel cost when links are closed. These measures are divided into two groups: one reflecting an “equal opportunities perspective”, and the other a “social efficiency perspective”. The measures are calculated for the road network of northern Sweden. Results are collected in a GIS for visualisation, and are presented per link and municipality. In view of the recent great interest in complex networks, some topological measures of the road network are also presented.  相似文献   

11.
The stability of road networks has become an increasingly important issue in recent times, since the value of time has increased considerably and unexpected delay can results in substantial loss to road users. Road network reliability has now become an important performance measure for evaluating road networks, especially when considering changes in OD traffic demand and link flow capacity over time. This paper outlines the basic concepts, remaining problems and future directions of road network reliability analysis. There are two common definitions of road network reliability, namely, connectivity reliability and travel time reliability. As well, reliability analysis is generally undertaken in both normal and abnormal situations. In order to analyse the reliability of a road network, the reliability of the links within the network must be first determined. A method for estimating the reliability of links within road networks is also suggested in this paper.  相似文献   

12.
A capacity related reliability for transportation networks with random link capacity is introduced. It is defined as the probability that the road network can accommodate a certain level of traffic demand, and is built on the concept of network reserve capacity. Network reserve capacity is defined as the largest multiplier applied to an existing origin-destination demand matrix that can be allocated to a transportation network in a user-optimal way without violating the link capacities. Due to large variability associated with link capacities, a probabilistic approach is adopted to model the different physical and operational factors that often degrade the capacity of roadways. A Monte Carlo simulation procedure is developed to estimate the capacity related reliability measure. Numerical results are provided to demonstrate the feasibility of the approach.  相似文献   

13.
A wide range of relatively short-term disruptive events such as partial flooding, visibility reductions, traction hazards due to weather, and pavement deterioration occur on transportation networks on a daily basis. Despite being relatively minor when compared to catastrophes, these events still have profound impacts on traffic flow. To date there has been very little distinction drawn between different types of network-disruption studies and how the methodological approaches used in those studies differ depending on the specific research objectives and on the disruption scenarios being modeled.In this paper, we advance a methodological approach that employs different link-based capacity-disruption values for identifying and ranking the most critical links and quantifying network robustness in a transportation network. We demonstrate how an ideal capacity-disruption range can be objectively determined for a particular network and introduce a scalable system-wide performance measure, called the Network Trip Robustness (NTR) that can be used to directly compare networks of different sizes, topologies, and connectivity levels.Our approach yields results that are independent of the degree of connectivity and can be used to evaluate robustness on networks with isolating links. We show that system-wide travel-times and the rank-ordering of the most critical links in a network can vary dramatically based on both the capacity-disruption level and on the overall connectivity of the network. We further show that the relationships between network robustness, the capacity-disruption level used for modeling, and network connectivity are non-linear and not necessarily intuitive. We discuss our findings with respect to Braess’ Paradox.  相似文献   

14.
Singapore’s Electronic Road Pricing (ERP) system involves time-variable charges which are intended to spread the morning traffic peak. The charges are revised every three months and thus induce regular motorists to re-think their travel decisions. ERP traffic data, captured by the system, provides a valuable source of information for studying motorists’ travel behaviour. This paper proposes a new modelling methodology for using these data to forecast short-term impacts of rate adjustment on peak period traffic volumes. Separate models are developed for different categories of vehicles which are segmented according to their demand elasticity with respect to road pricing. A method is proposed for estimating the maximum likelihood value of preferred arrival time (PAT) for each vehicle’s arrivals at a particular ERP gantry under different charging conditions. Iterative procedures are used in both model calibration and application. The proposed approach was tested using traffic datasets recorded in 2003 at a gantry located on Singapore’s Central Expressway (CTE). The model calibration and validation show satisfactory results.  相似文献   

15.
This study proposes a framework to explore the concepts of exposure, vulnerability and connectivity in EU road network and to assess the potential transportation infrastructure sensitivities towards Sea-Level Rise (SLR) and storm surges. The magnitude and significance of impacts were determined and knowledge of network robustness was built up based on existing climate data and on future trends. Various spatial databases were integrated and a four-stage transport model was used to explore the likely impacts of network degradation. The pattern of the network was assessed via both node- and link-based measurements, where different road databases, namely TRANS-TOOLS and Tele Atlas/TomTom, were employed in order to analyze the impact of spatial resolution within network connectivity analyses. This general framework developed for European Union, was tested on a specific and articulated case study area; namely, the north-east coastal region of Spain. The research conducted, yielded useful methods for the analysis of network vulnerability, where impacts are more significant in regional accessibility patterns. Accessibility indicators at the regional level changed drastically, with some regions showing up to a 26% decrease. According to the results of network connectivity indicators, the changes in network topology have reduced the number of alternative routes and placed more pressure on the transport system. The implementation of this framework and quantitative assessment methodologies outlined in this paper could be employed to assist policy makers to recognize the opportunities that may arise or diminish the adverse effects.  相似文献   

16.
The analysis of complex networks has been carried out in different fields using an ample variety of method and concepts. Recently, in the general literature of regional economics, the concepts of resilience, connectivity, vulnerability and criticality have been gaining their momentum. The aim of this paper is to provide an analytical framework, using well-known accessibility indicators, in order to calculate the critical links or road sections of the Spanish high-capacity road network. Our analysis will be based on approximately four hundred sections that will be classified in five different groups according to their criticality degree in the whole network. Our analysis will be complemented with the comparison of the results obtained in five different scenarios, namely the average criticality using the effects on the whole country, Madrid, Barcelona, Valencia and Pontevedra. Furthermore, the paper will also analyze what kind of intrinsic characteristics of the sections favor or not the links’ criticality using a method based on a classification and regression tree. This analysis is crucial to understand other important concepts that are recently being studied in network and spatial economics, like, for example, resilience and vulnerability. It is concluded that the number of relations or routes, being a trunk or not, the road density and the time to Madrid capital play an important role in the criticality of the roads section in the high capacity road network.  相似文献   

17.
Road networks play a vital role in maintaining a functioning modern society. Many events perceptibly affect the transport supply along these networks, especially natural disasters such as floods, landslides, and earthquakes. Contrary to more common disruptions of traffic from accidents, or maintenance closures, natural disasters are capable of destroying large numbers of roads and usually cover vast areas. When evaluating network damage no single measure alone is able to describe the full extent of network destruction. In this study, we investigated six highly damaging natural disasters, which occurred in the Czech Republic between 1997 and 2010. They were all induced by extreme rainfall or by rapid snowmelt and resulted in floods and landslides. Their impacts are evaluated with respect to the damage to road networks and decreased serviceability. For mutual comparison of the impacts and their analysis we used several criteria, described in the paper, related to economic impacts, physical harm to individuals and infrastructures, and the effects on connectivity and serviceability. We also introduced a new measure based on the network efficiency index which takes into account the importance of nodes based on their population. Moreover, we provide a detailed analysis of one such event in July 1997 that significantly affected the road network of the Zlín region.  相似文献   

18.
The transport system is critical to the welfare of modern societies. This article provides an overview of recent research on vulnerability and resilience of transport systems. Definitions of vulnerability and resilience are formulated and discussed together with related concepts. In the increasing and extensive literature of transport vulnerability studies, two distinct traditions are identified. One tradition with roots in graph theory studies the vulnerability of transport networks based on their topological properties. The other tradition also represents the demand and supply side of the transport systems to allow for a more complete assessment of the consequences of disruptions or disasters for the users and society. The merits and drawbacks of the approaches are discussed. The concept of resilience offers a broader socio-technical perspective on the transport system’s capacity to maintain or quickly recover its function after a disruption or a disaster. The transport resilience literature is less abundant, especially concerning the post-disaster phases of response and recovery. The research on transport system vulnerability and resilience is now a mature field with a developed methodology and a large amount of research findings with large potential practical usefulness. The authors argue that more cross-disciplinary collaborations between authorities, operators and researchers would be desirable to transform this knowledge into practical strategies to strengthen the resilience of the transport system.  相似文献   

19.
A network change is said to be irreversible if the initial network equilibrium cannot be restored by revoking the change. The phenomenon of irreversible network change has been observed in reality. To model this phenomenon, we develop a day-to-day dynamic model whose fixed point is a boundedly rational user equilibrium (BRUE) flow. Our BRUE based approach to modeling irreversible network change has two advantages over other methods based on Wardrop user equilibrium (UE) or stochastic user equilibrium (SUE). First, the existence of multiple network equilibria is necessary for modeling irreversible network change. Unlike UE or SUE, the BRUE multiple equilibria do not rely on non-separable link cost functions, which makes our model applicable to real-world large-scale networks, where well-calibrated non-separable link cost functions are generally not available. Second, travelers’ boundedly rational behavior in route choice is explicitly considered in our model. The proposed model is applied to the Twin Cities network to model the flow evolution during the collapse and reopening of the I-35 W Bridge. The results show that our model can to a reasonable level reproduce the observed phenomenon of irreversible network change.  相似文献   

20.
The paper investigates the efficiency of a recently developed signal control methodology, which offers a computationally feasible technique for real-time network-wide signal control in large-scale urban traffic networks and is applicable also under congested traffic conditions. In this methodology, the traffic flow process is modeled by use of the store-and-forward modeling paradigm, and the problem of network-wide signal control (including all constraints) is formulated as a quadratic-programming problem that aims at minimizing and balancing the link queues so as to minimize the risk of queue spillback. For the application of the proposed methodology in real time, the corresponding optimization algorithm is embedded in a rolling-horizon (model-predictive) control scheme. The control strategy’s efficiency and real-time feasibility is demonstrated and compared with the Linear-Quadratic approach taken by the signal control strategy TUC (Traffic-responsive Urban Control) as well as with optimized fixed-control settings via their simulation-based application to the road network of the city centre of Chania, Greece, under a number of different demand scenarios. The comparative evaluation is based on various criteria and tools including the recently proposed fundamental diagram for urban network traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号