首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
通过分离涡模拟(DES)进行整车外流场的三维瞬态仿真,得到车身表面压力脉动,并采用FW-H声学模型对气动噪声进行仿真分析。通过与类后视镜气动噪声试验数据相比较,验证了仿真的准确性。对有、无后视镜工况下,后视镜区域瞬态流场、车身表面压力脉动、侧窗监测点声压级进行比较,揭示了后视镜区域气动噪声产生机理,为降低汽车气动噪声提供技术支持。  相似文献   

2.
针对某车型外后视镜气动噪声问题,提出了一种基于车外流场计算的气动噪声快速优化方法,并进行了相应的试验验证。在非定常数值模拟中,采用分离涡模拟与计算气动声学相结合的方法,对后视镜侧窗表面气动噪声进行了分析。结果表明,优化后侧窗表面气动噪声源强度在各频段明显减弱,各监测点声压级降低。道路试验验证结果表明,优化后各频段车内噪声也明显改善,后视镜气动噪声问题消失。实车道路测试结果表明,基于外流场数值模拟的气动噪声优化方法可行、合理,外流场数值模拟可为造型初期车内气动噪声优化提供有效指导,降低车型开发成本与周期。  相似文献   

3.
针对汽车存在的气动噪声问题,为了减小后视镜内侧面的偶极子声源强度,降低后视镜的辐射噪声,对现有的后视镜进行优化,添加导流结构并进行数值仿真计算。对添加了导流结构和未添加导流结构两种情况进行分析对比,结果表明:后视镜添加了导流结构之后,侧窗的偶极子噪声源降低了约1.1d B,有利于降低侧窗的湍流压力噪声;后视镜内侧面偶极子声源有明显降低,有利于侧窗辐射噪声的降低。  相似文献   

4.
针对后视镜引起的前侧窗与车内气动噪声问题,采用计算流体力学(CFD)方法对某商用车进行车外后视镜区域数值模拟和车内噪声预测的研究。稳态分析采用RANS模型中SST(Menter)k-ω模型,瞬态分析采用基于SST(Menter)k-ω的分离涡模拟(DES);通过分析后视镜侧窗区域的稳态静压力与瞬态动压力、速度和涡量云图,揭示了因A柱后视镜而产生车窗表面的湍流压力脉动的机理;同时求解瞬态流场获得两侧车窗表面湍流压力脉动载荷。采用声学FEM方法将车窗表面湍流压力脉动作为边界条件来计算气动噪声的传播,基于车内声学空间不同频率的声压级云图分布规律,说明了车内气动噪声主要集中在中低频段和声压级最大的分布区域;驾驶员左耳旁声压级曲线展示了20-2500 Hz频段内声压级变化规律。最后进行实车道路滑行测试,证实了气动噪声在车速80-110 km/h时较为明显的结论;采用CFD结合声学有限元的方法可较为准确地预测车内100-2500 Hz气动噪声的声压级,为优化后视镜、降低驾驶室内气动噪声提供仿真和试验的技术方案。  相似文献   

5.
汽车高速行驶时的气动噪声对汽车的舒适性影响很大,后视镜后方涡流对车身的脉动压力直接影响气动噪声的形成,而非光滑表面结构的合理布置能够对涡流起到一定的控制作用。采用计算流体力学(Computational Fluid Dynamics,CFD)中的RANS与分离涡模拟(Detached Eddy Simulation,DES)对长方体模型进行气动噪声数值仿真,并将其结果与试验结果对比,评估仿真方法对气动噪声预测的准确度。将凹坑型非光滑单元体布置在侧窗全连接、侧窗半连接、门外板连接三种不同基座造型的后视镜表面进行仿真计算。对比分析非光滑表面对流动状态、涡流结构及侧窗监测点声压级频谱的影响,探讨非光滑结构的扰流效应对后视镜区域流场形成的控制作用及其气动降噪效果,为有效控制后视镜区域流场结构,抑制涡激振动,改善乘员舱舒适性提供参考。  相似文献   

6.
针对车外后视镜引起的气动噪声问题,在吉林大学风洞实验室对某系列车型的5款后视镜做了实验研究。实验测量了60~120km/h 4种风速下5款后视镜尾流区域的8个监测点的气动噪声数据。结果表明,随车速的增高后视镜引起的气动噪声上升明显,且对后视镜尾流核心区域监测点处的影响最为显著。对比分析5款后视镜的造型特点,提取出5个对气动噪声有较大影响的造型因素。优化组合这些影响因素,可在满足整体造型效果的同时,有效降低气动噪声水平。  相似文献   

7.
针对传统风洞试验、数值模拟等方法计算噪声值费时长、资源消耗大等问题,提出一种基于机器学习的气动噪声预测方法。以后视镜特征参数为数据集输入,对不同特征参数下的后视镜模型进行瞬态流场与声场联合仿真,将计算得到的总声压级值作为数据集输出,分别用不同数量的样本数据训练支持向量回归机,通过建立的预测模型对同一测试集进行预测得到总声压级预测值。结果表明,基于支持向量回归机的预测方法能得到与计算值误差较小的预测结果,在较少样本数据支撑下也具有较高的预测精度,可用于汽车后视镜气动噪声的预测。  相似文献   

8.
后视镜回流区内湍流流动产生的Lighthill 体声源是车内风噪声的重要来源。采用连续伴随方法,以体声源强度为目标函数对汽车后视镜进行了风噪敏感度分析研究。通过风噪敏感度分析得出后视镜敏感度云图,用于指导后视镜的优化设计,从而减小由后视镜带来的气动噪声。使用开源软件OpenFOAM 对某车型后视镜单体完成网格划分、流场计算以及敏感度分析,并通过对后视镜流场进行分析以论证所得到的敏感度云图的正确性。结果表明,基于连续伴随的敏感度分析方法可以有效地计算风噪敏感度并应用于风噪优化。  相似文献   

9.
后视镜回流区内湍流流动产生的Lighthill体声源是车内风噪声的重要来源。采用连续伴随方法,以体声源强度为目标函数对汽车后视镜进行了风噪敏感度分析研究。通过风噪敏感度分析得出后视镜敏感度云图,用于指导后视镜的优化设计,从而减小由后视镜带来的气动噪声。使用开源软件OpenFOAM对某车型后视镜单体完成网格划分、流场计算以及敏感度分析,并通过对后视镜流场进行分析以论证所得到的敏感度云图的正确性。结果表明,基于连续伴随的敏感度分析方法可以有效地计算风噪敏感度并应用于风噪优化。  相似文献   

10.
综合利用计算流体力学数值仿真分析与风洞试验验证相结合的方法对某量产微型客车进行整车全细节空气动力学仿真分析和研究。对比分析前保险杠、后视镜、车窗等零部件对气动阻力的影响。研究表明,采用优化前保险杠并增加导流板、修改后视镜造型、车窗一体化设计等方案,可使该车气动阻力系数减少约6%。  相似文献   

11.
利用计算流体动力学(Computational Fluid Dynamics,CFD)分析工具和声学风洞试验,对某款全新开发的SUV车型进行局部造型和车身密封隔音优化,车内气动噪声性能得到明显提升。外流场仿真计算和声源识别测试具有很好的一致性,识别出后视镜、前轮腔、A柱、雨刮等局部外形噪声声源部位,利用CFD仿真对流场进行优化,提出修改方案并通过实车测试验证效果,有效技术方案在新款车型上得到应用。根据泄漏噪声关键部位的识别,对车身密封和隔音进行了优化和提升,通过声学风洞试验验证了方案的实施效果,新款车型整车气动噪声车内声压级降低了约1.8dB(A),语言清晰度(Articulation Index,AI)提升了10%,提升效果明显。  相似文献   

12.
为研究乘用车内部气动噪声的空间分布规律、频率特性和车内噪声水平的影响因素,以便进行改进设计,对某款SUV在吉林大学汽车风洞内进行了噪声测试试验。结果表明,车内气动噪声主要由泄漏噪声与外形噪声组成,空间上车内噪声左右对称分布,但发现了前排泄漏噪声高于后排、而后排外形噪声高于前排这一典型现象。车内噪声水平随风速增加呈线性递增,且随着偏航角度增加,处于背风侧的位置,由于气流分离变甚,噪声明显恶化,而迎风侧的噪声变化很小。根据试验结果提出对A柱附近的衬条进行局部补强,采用泡棉封堵后视镜与车身连接处线束穿孔,采用喇叭口造型和减薄镜柄的新造型后视镜,以及在顶棚和四门钣金件加贴阻尼片等一系列车内噪声改进方案,有效降低了车内气动噪声。  相似文献   

13.
为研究乘用车内部气动噪声的空间分布规律、频率特性和车内噪声水平的影响因素,以便进行改进设计,对某款SUV在吉林大学汽车风洞内进行了噪声测试试验。结果表明,车内气动噪声主要由泄漏噪声与外形噪声组成,空间上车内噪声左右对称分布,但发现了前排泄漏噪声高于后排、而后排外形噪声高于前排这一典型现象。车内噪声水平随风速增加呈线性递增,且随着偏航角度增加,处于背风侧的位置,由于气流分离变甚,噪声明显恶化,而迎风侧的噪声变化很小。根据试验结果提出对A柱附近的衬条进行局部补强,采用泡棉封堵后视镜与车身连接处线束穿孔,采用喇叭口造型和减薄镜柄的新造型后视镜,以及在顶棚和四门钣金件加贴阻尼片等一系列车内噪声改进方案,有效降低了车内气动噪声。  相似文献   

14.
后视镜是整车风噪的重要噪声源之一,其外形直接影响整车NVH性能。后视镜外形对风噪的影响按频率特性可大致分为两类,啸叫与宽频噪声。文章通过仿真计算与试验相结合的方法,分别对这两类噪声进行了分析与优化。通过试验验证,结果显示,优化方案可以有效消除啸叫,对宽频噪声中高频段也有较明显的改善。此类优化方法的原则适用于后视镜外形早期开发设计阶段。  相似文献   

15.
针对某中型客车后视镜在怠速工况下抖动大的问题,采用CAE仿真与试验分析相结合的方法。分析表明,后视镜的1阶和2阶模态频率分别与发动机的1阶和2阶激励频率很接近,后视镜的抖动是由发动机的1阶和2阶激励引起共振。最后对后视镜骨架进行优化改进,顺利解决了怠速工况后视镜振动大的问题。  相似文献   

16.
宋妙妍  周国成  陈宏清  陈宝 《汽车工程》2023,(4):681-689+707
为研究后视镜镜臂对其产生的气动噪声的影响,针对某SUV后视镜采用脱体涡(detached eddy simulation)方法分析其流场和近场噪声特性。通过改变镜臂外形设计了两种降噪模型,在航空工业气动院FL-53风洞开展了3个后视镜模型的气动噪声风洞试验。结果显示:通过改变镜臂周围曲率,能够减小涡的尺度,改变涡脱落的方向,降低后视镜尾流区域近场噪声,且风速会影响部分频段的降噪效果;从远场指向性看,3个后视镜在尾流区声压级较大,降噪模型没有改变远场指向性。  相似文献   

17.
根据计算进气格栅开、闭两种状态的整车模型的空气动力学性能参数对比风洞实验结果,确定了原设计的整体流动仿真的精度;而基于该模型运用DES法计算的侧窗表面测点的声压级与实验结果对比,确定了2mm网格气动噪声仿真的精度。对新方案和原设计运用Q准则的流态显示,表明新方案后视镜尾流区的流动状态得到改善;侧窗表面的湍流压力脉动的对比表明,后视镜外形的改动对湍流压力脉动影响很小;而通过Lighthill声类比法获得的声压脉动却有显著差异,新方案在2 000~8 000Hz范围内的声压脉动明显减小。Beamforming测试的声源分布和改进效果,与CFD计算预测一致,且与车内的声压级测试有很好的相关性。以上研究表明:Q准则的流态显示可用于气动噪声的定性评估;声压脉动是后视镜气动噪声仿真最主要的评价依据,不可忽略。  相似文献   

18.
在分析了车身密封系统引起的车内气动噪声产生机理及影响因素的基础上,通过整车气动声学风洞试验,对某四门三厢轿车的车内气动噪声的构成成分-泄漏噪声及外形噪声的频率特性进行了分析,并通过“开窗法”调查了车身各密封部件对车内泄漏噪声的贡献.结果表明,泄漏噪声主要发生在中高频段,且对车内总噪声的贡献比外形噪声大;车门、后视镜和侧窗的密封是该轿车最重要的泄漏噪声源,但具有不同的特征频段.  相似文献   

19.
为得到某SUV的车内噪声,分别采用计算流体力学法和统计能量法对该车型进行外部流场和乘坐舱内噪声计算,获得驾驶员头部区域的声压级曲线。在原车仿真结果基础上,对后视镜和雨刮进行改进,并采用数值仿真和道路试验对原车和改进后的噪声进行评估和对比。仿真和试验得到的声压级曲线整体趋势一致,表明仿真结果的有效性;后视镜和雨刮改进后,仿真结果显示两种改进方案的噪声,在全频段均有改善,其中声压级最大降幅达5. 6dB(A),两种方案的总声压级分别降低1. 5和1. 8dB(A);路试结果显示在干扰噪声较小的高频段,改进后的声压级有较明显的降低,部分高频段最大降幅达5. 1dB(A),两种方案的总声压级分别降低0. 2和0. 7dB(A),表明了改进的有效性和研究方法的可行性。  相似文献   

20.
汽车高速运行时会产生空气动力学噪声,这对汽车乘坐的舒适性、车内乘客的相互交流都会有十分不利的影响。通过CFD手段,采用大涡模拟方法和Lighthill理论,对汽车外流场进行了计算和声学分析。结果表明,CFD不仅可以提供该车气动噪声特性,而且指出前挡风玻璃与车顶连接处、后视镜的造型、车门把手存在优化可能,这为进一步降低该车的风噪提供方向性指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号