首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
地铁盾构隧道施工监测技术   总被引:3,自引:1,他引:2  
上海轨道交通10号线2标区间隧道采用盾构法施工,在盾构推进过程中对地表变形、地下管线沉降、建筑物沉降等方面进行了施工全过程跟踪监测;通过对监测结果进行分析研究,判断施工进展情况和施工中存在的问题,并在此基础上有针对性地改进施工工艺和修改施工参数.研究成果可供其他类似工程参考.  相似文献   

2.
地铁隧道盾构施工参数对地表沉降影响的试验研究   总被引:2,自引:0,他引:2  
以南京地铁2号线某区间隧道为背景,研究了盾构法施工中的盾构施工参数(包括推进力、工作面土压力、刀盘扭矩等)对地表沉降的影响,通过对现场监测结果的分析,总结了地表沉降规律,对后续工程施工具有指导意义。  相似文献   

3.
成都地铁盾构隧道地表沉降分析   总被引:5,自引:0,他引:5  
结合成都地铁某区间盾构隧道施工情况,根据实测的地表沉降数据,分析了盾构推进时对地表的横向沉降影响。通过实测数据得出Peck法计算参数,用实测值来验证Peck曲线预测沉降的吻合程度。分析表明:当沉降槽宽度系数k在0.13~0.31之间时,可以较好地反映出横向沉降规律。  相似文献   

4.
基于蚁群算法的地铁盾构隧道长期沉降预测   总被引:2,自引:1,他引:1  
在软土地区,投入运营的地铁盾构隧道会因各种原因产生对隧道结构内力、变形、接头防水以及隧道正常运营不利的纵向不均匀沉降。由于影响因素复杂,目前尚无可行的沉降预测模型。本文在对上海地铁1号线某区间沉降实测数据分析的基础上,采用具有较强鲁棒性、优良的分布式计算、易于与其他方法相结合等优点的蚁群算法,综合考虑各因素对沉降影响的整体效果,利用隧道实测的纵向累积沉降量、累积沉降差分别构造信息函数和启发函数,建立地铁盾构隧道长期沉降预测模型。预测结果表明,该方法不仅可行而且与实际量测数据吻合较好。  相似文献   

5.
以深圳地铁2号线盾构隧道下穿填海区滨海大道公路为背景,利用非线性有限元分析软件ABAQUS建立三维有限元模型,研究在隧道施工扰动下,地表的横向沉降和纵向沉降、地层的水平位移和分层沉降的变形规律.仿真计算结果表明:在隧道横断面方向上地表沉降近似呈正态分布,在纵断面方向上地表沉降槽宽度约为15.0 m;距隧道开挖面越近,地层水平位移受车辆荷载和隧道开挖扰动越大;在车辆荷载作用区域,地表沉降和地层水平位移均大于非车辆荷载作用区域,地层的分层沉降和沉降槽宽度均随着地层埋深增加而减小,地层的上部沉降普遍大于下部;在非车辆荷载作用区域,隧道中心线上方的土体沉降随着地层埋深的增加而增加.  相似文献   

6.
软土地区的地铁盾构隧道沉降的影响因素复杂,且不同的因素会对隧道结构内力、变形、接头伸缩等造成影响,导致沉降预测困难。在对杭州地铁1号线某区间沉降实测数据分析的基础上,采用基于Monte-carlo迭代求解模拟退火算法,对逻辑斯蒂曲线模型进行求解,并综合考虑各因素对沉降影响的整体效果,建立地铁盾构隧道长期沉降预测模型。根据实测同预测数据的对比研究分析,本计算求解方法不仅可行,而且与实际量测数据吻合较好。  相似文献   

7.
文章应用非线弹性及线弹性本构模型,对长春地铁1号线火车站站—北京大街站区间双线隧道盾构施工中,在不同施工工序条件下地表沉降及周边建筑物沉降进行分析,得到了使得地表沉降及建筑物不均匀沉降最小的最佳工序,以期为长春地铁工程盾构施工、地表沉降及建筑物不均匀沉降控制提供参考。  相似文献   

8.
针对小净距穿越两栋建筑物的地铁盾构隧道施工引起地表沉降和两侧建筑物倾斜的问题,采用数值模拟方法分析盾构隧道施工对邻近建筑物及其桩基础的影响。结果表明:后行线(北线)开挖引起的隧道轴线上方地表沉降略小于先行线(南线),两者叠加形成的沉降槽呈偏W形;开挖面位置一定时,桩顶沉降大于水平位移,桩底沉降与水平位移接近;随着开挖面接近桩,桩顶沉降和桩底水平位移逐渐增大,在开挖面通过2倍洞径后桩底水平位移逐渐趋于稳定,在开挖面通过6倍洞径后桩顶沉降逐渐趋于稳定;随着开挖面接近桩,桩顶及桩底水平位移朝向隧道,桩中部则远离隧道。  相似文献   

9.
地层损失是盾构施工产生土体变形的主要原因.以成都地铁1号线某盾构区间隧道为工程背景,根据现场前期监测结果,提出了基于地层损失概念的"约束一释放"法来模拟土压平衡盾构开挖过程,运用三维有限差分模型对不同地层损失量下的地表沉降横向分布和地表土层水平横向应变进行了研究.结果显示,最大地表沉降值与地层损失量基本呈线性关系;地表土层水平横向应变存在拉压分区,其拉压分界正好与横向沉降槽的反弯点吻合;且不同地层损失量下沉降槽的反弯点不变;结合现场监测结果,认为地层损失量取1%的计算值与实测值较为吻合.  相似文献   

10.
在总结分析现有沉降计算方法的基础上,采用分层总和法及太沙基理论对地铁盾构隧道长期静力沉降进行计算分析,并对沉降规律进行总结。由于隧道埋深、隧道上覆土层与下卧土层性质的差异,沿线路方向的沉降在空间和时间方面是不均匀的,各断面在前5年完成绝大部分固结沉降,后续沉降继续发展,逐渐趋于最终沉降值。  相似文献   

11.
目前国内地铁车站较少采用拱盖法施工,其施工过程中的地表沉降控制鲜有分析。青岛地铁车站一般埋设在"上软下硬"地层中,拱盖法能较好地适应其地层特点,并节省造价。通过某地铁车站拱盖法施工全过程的数值模拟及沉降监测数据分析对比,得到不同工序影响地表沉降的大小程度,并依据最终控制值提出各工序下地表沉降的分步控制指标。  相似文献   

12.
南宁地铁 3 号线青市区间越江隧道工程,盾构机在泥岩地层施工中存在刀盘结饼、渣土滞排等技术难题, 不仅降低盾构施工效率,更因渣土滞排导致江底段施工时易出现隧顶覆土击穿、盾尾密封失效等施工风险。通 过施工前对盾构机选型,针对泥岩地层段施工技术难题,对盾构机进行针对性设计、改造,在施工中控制及优 化掘进参数等,已有效缓解泥水盾构泥岩地层施工中刀盘结饼、渣土滞排等技术难题,提高泥水盾构泥岩地层 的施工效率,降低江底段泥水盾构的施工风险,对类似工程特别是泥水盾构江底浅埋段泥岩地层施工具有一定 的参考价值。  相似文献   

13.
天津地铁5号线第10标段位于天津市繁华地段,交通繁忙,地质复杂,工程大部分地段是软土地层。根据地质勘察资料,确定隧道盾构总体施工方案。论述隧道盾构施工主要工艺、联络通道及端头冻结加固、盾构法施工变形控制,提出对地面隆陷、建筑物下沉及倾斜、地下管线及隧道管片变形进行监测,提出采用盾构前方隆陷控制、盾构掘进沉降控制和固结沉降控制等措施控制地面变形量。采用盾构法施工具有较高的技术经济性。  相似文献   

14.
地铁盾构隧道穿越瓦斯地层的施工技术   总被引:1,自引:0,他引:1  
介绍了武汉轨道交通2号线一期工程汉口站至范湖站区间盾构隧道成功穿越低瓦斯地层的地质及施工情况.就目前的技术水平和存在的不足,提出了瓦斯地层勘察的基本要求.分析了瓦斯地层修建隧道的风险因素和风险源.针对性地提出了瓦斯地层隧道的电气设备防爆改造、监控监测系统、隧道通风系统、盾构掘进参数、施工工艺、人员培训等方面的技术措施、方案和技术参数.  相似文献   

15.
武汉地铁盾构施工地表沉降的非等间隔模型分析   总被引:1,自引:1,他引:0  
研究目的:地铁盾构施工监测数据(特别在盾构始发段)具有数据量小,监测间隔不相等的特点,一般数据拟合与预测方法的应用受到诸多约束。研究结论:本文提出了通过预设阈值的改进非等间隔模型,并基于武汉地铁盾构二号线的积玉桥始发段的监测数据进行了拟合与预测分析。结果表明,本文方法能在数据量小,非等间隔监测数据的前提下,对地表沉降进行较好的拟合与预测,并与传统非等间隔模型的结果进行了比较。  相似文献   

16.
武汉长江隧道盾构施工引起的地表沉降预测   总被引:3,自引:1,他引:2  
研究目的:盾构隧道施工会对周围土体产生扰动,进而影响到周围建筑物和地下管线.因此,准确预测武汉长江隧道工程盾构施工引起的地表沉降对保护周围建筑物和地下管线有着重要意义. 研究结论:研究结果表明,沿隧道轴线盾构开挖面后方40 m以外,土体的沉降可以达到稳定状态,地层损失率不超过2.0%时,由于土体塑性变形引起的地表沉降占总沉降量的比例较小.  相似文献   

17.
以沈阳地铁一号线第5合同段盾构区间施工为例,详述地铁盾构始发负环管片组装及拆除施工技术。通过设计比选,形成一套施工速度快、安全可靠的组装及拆除反力架、负环钢管片、负环混凝土管片的施工方法,具有较好的实用性、先进性、科学性。  相似文献   

18.
小半径曲线地铁隧道盾构法掘进技术   总被引:1,自引:0,他引:1  
分析小半径曲线地铁隧道盾构法施工易发生的问题,结合金科路站~广兰路站区间小半径曲线隧道工程实例,介绍曲线隧道的盾构法掘进技术,对类似工程具有借鉴作用。  相似文献   

19.
盾构施工扰动引起隧道固结沉降的估算方法   总被引:1,自引:0,他引:1  
以上海地铁为背景,探讨施工扰动造成隧道固结沉降的估算方法.将问题简化为平面应变问题;采用无量纲参数η和D反映盾构施工的松动效应与挤压效应,认为隧道沉降是松动效应与挤压效应共同作用的结果.采用镜像法对地层损失(松动效应)造成的隧道上浮量进行研究;采用柱孔扩张理论对挤压效应造成隧道固结沉降量进行研究,通过计算土体中各点应力增量得到各点的超孔隙水压力,进而得到挤压效应造成的扰动范围H;通过分层总和法计算挤压效应造成的隧道最终固结沉降量;利用平均固结度得到t时刻固结沉降量;将松动效应与挤压效应造成隧道竖向位移相加,得到施工扰动造成隧道固结沉降量.结果表明:地层损失造成的隧道上浮量与参数η成正比;挤压效应造成的隧道固结沉降量与参数D成指数关系;当D<0.3ln(1.34η+ 1.31)时,隧道表现为上浮;当D>0.3ln(1.3 4η+1.31)时,隧道表现为下沉.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号