首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高速动车组裙板设计研究   总被引:1,自引:0,他引:1  
介绍了高速动车组裙板的总体设计方案,包括高速动车组裙板的工况参数、标准以及设计理念.提出了高速动车组裙板设计的发展方向.  相似文献   

2.
介绍了复合材料(玻璃纤维和碳纤维复合)裙板与铝合金材料裙板的结构、性能对比,对动车组采用复合材料新结构裙板和既有铝合金结构裙板进行了静强度、模态等性能分析,证明了复合材料裙板在高速动车组上应用的适用性。  相似文献   

3.
文章以轻量化城轨车辆为研究对象,选取了3种不同成分组成的司机室复合材料裙板,依据EN 45545-2:2020标准进行火焰蔓延、热释放速率、烟密度和毒性试验,结果表明:玻璃纤维增强环氧树脂基复合材料裙板和碳纤维/玻璃纤维层间混杂增强丙烯酸酯基复合材料裙板均无法完全满足EN 45545-2:2020 HL2级要求,碳纤维/玻璃纤维层间混杂增强聚碳酸酯基复合材料裙板可满足EN 45545-2:2020 HL2和HL3级要求,碳纤维和玻璃纤维混杂聚碳酸酯基复合结构可满足复合材料裙板的较高防火性能要求,并可兼顾轻量化和成本需求。  相似文献   

4.
文章主要介绍芳纶纸和芳纶蜂窝的性能特点及其在国内外轨道交通领域的应用,并分析了其今后的发展方向。  相似文献   

5.
空气弹簧是铁道车辆转向架,尤其是高速客车和地铁车辆转向架的关键部件,其横向弹性特性对车辆的运行品质具有重要的影响.文章运用非线性有限元分析技术研究了高速客车用带金属裙板的自由膜式空气弹簧的横向弹性特性,分析了空气弹簧大变形的几何非线性及胶囊与金属裙板形成的接触非线性问题.给出了空气弹簧横向非线性特性较为精确的描述,理论计算与试验结果较为吻合.研究表明:空气弹簧的横向刚度随胶囊内压的增加而增加;胶囊铺层帘线角对横向刚度有较大影响;帘线层数越多,横向刚度越大,但在胶囊总厚度给定时,层数的影响不大.  相似文献   

6.
随着高速列车运行速度的提高,列车与空气间的相互作用加剧,气动阻力对列车的影响越来越大.为了在美化列车车头外轮廓的前提下优化司机室区域的空气受流情况,高速列车普遍采用便于成型的玻璃钢裙板结构.在对某型动车组头车玻璃钢结构模型合理简化的基础上,依据EN 12663-1:2001[1]确定了载荷工况,完成对裙板及其安装附件的强度校核,结果对后续玻璃钢裙板结构设计及优化具有一定的参考意义.  相似文献   

7.
以CJ-2型动车组设备舱裙板为研究对象,采用FE-safe中verity模块等效结构应力法,基于主S-N曲线,进行了焊缝疲劳分析。分析和优化结果可为高速列车裙板结构的可靠性评估和优化设计提供参考。  相似文献   

8.
有限元法研究空气弹簧参数对横向特性的影响   总被引:10,自引:1,他引:9  
张广世 《铁道车辆》2000,38(9):13-16
用非线性有限元分析技术研究了由多层正交各向异性复合材料构成的铁道车辆用空气弹簧的非线性特征,分析了大变形几何非线性工况下胶囊与金属裙板接触形成的非线性接触问题,讨论了空气弹簧各参数组合对空气弹簧横向特性的影响。  相似文献   

9.
介绍了25T型客车裙板结构的改进设计.  相似文献   

10.
介绍了轻轨列车转向架裙板布置形式及外形尺寸确定的依据,介绍了转向架裙板结构组成和安装方式。通过裙板静强度计算和疲劳强度校核,得出转向架裙板结构设计参数,以保证设计的合理性,达到安装便捷、防护好、外形美观的效果。  相似文献   

11.
采用有限元方法分析动车组设备舱结构在典型受载条件下的静强度,揭示典型动车组设备舱结构的薄弱部位;对比裙板弯钩过渡段加筋式与加厚式优化方案应力分布,提出提升裙板结构强度的更优设计形式;对比骨架结构腹板增厚前后应力分布特征,提出设备舱骨架结构改进方案;评定优化后设备舱结构静强度结果,为动车组设备舱结构分析与设计提供参考。  相似文献   

12.
加强整体化层对T梁受力影响的试验评估   总被引:1,自引:0,他引:1  
某高速公路装配式T梁桥桥面板破损严重,后采用加铺整体化层的办法对桥面板进行了加强;加铺在提高了梁体的刚度和整体受力性能的同时,也增加了桥跨的恒载,使T梁的工作状态发生了改变.通过荷载试验的方式测试加铺前、后结构的反应,对加铺后T梁的实际工作状态进行了评估和分析.  相似文献   

13.
转向架作为高速列车大面积裸露在外且外形复杂的运行部件受到列车底部气流的直接作用,区域气动外形结构对高速列车整车气动阻力具有重要影响。基于三维稳态SST k-ω双方程湍流模型,采用数值仿真方法研究了轴箱外置式转向架不同包覆方式对高速列车气动性能的影响。研究了转向架区域安装小裙板、半包裙板、全包裙板、全包裙板+小底板以及全包裙板+大底板等5种方案下的高速列车气动性能,比较了不同方案下高速列车气动阻力的变化规律,阐明了高速转向架包覆方式对整车气动阻力、车底流动特性以及列车表面压力分布的影响。研究结果表明:随着转向架裙板包覆面积的增加,转向架腔后端板受到的气流冲击逐渐减弱,后端板上的正压分布降低,列车转向架区域周围的边界层厚度逐渐减小,转向架区域内的压力分布差异性逐渐减小,从而实现了列车整车气动阻力系数的降低。与小裙板模型相比,半包裙板、全包裙板、全包裙板+小底板以及全包裙板+大底板模型的列车气动阻力系数分别降低了5.2%、8.65%、10.3%、11.1%。对于轴箱外置式转向架来说,全包裙板+大底板方案可有效改善转向架区域流场,降低整车气动阻力。研究得到的转向架包覆方式将为新一代高速列车气动...  相似文献   

14.
为分析砾石冲击动车组裙板过程中的砾石粒子粒径、冲击速度和冲击角度这三个影响冲击变形的因素,得到对变形的影响规律,本文采用空气炮砾石冲击试验装置和非线性瞬时动力学软件LS-DYNA,研究砾石的粒径等级、冲击速度、冲击角度对动车组裙板的冲击变形规律。研究结果表明:裙板的变形程度与粒径、冲击速度和冲击角度之间有着不同的函数关系。裙板冲击点最大位移以及凹坑深度与砾石粒径之间存在幂函数关系,与冲击速度之间存在一次线性关系,与冲击角度之间存在二次线性关系。本文研究为高速动车组设备舱裙板结构后续设计提供了理论依据。  相似文献   

15.
王红 《铁道车辆》2012,(6):18-20,47
介绍了动车组车下不锈钢裙板结构及存在的问题,提出了用铝合金代替不锈钢材料制造裙板的设计思路,并阐述了其工艺特点。  相似文献   

16.
采用计算流体力学的方法,分别分析了地铁车辆在明线行驶和通过隧道时,车辆转向架及周围裙板结构对地铁车辆整车气动性能的影响。计算结果表明,安装裙板可以有效降低地铁车辆转向架区域的气动阻力,其中对第1台转向架的影响最为显著,但同时也会导致列车车身阻力的增加;安装裙板后的地铁车辆在明线行驶时,整列车的气动性能得到明显改善,但当其通过隧道时,整列车的减阻效果并不明显。  相似文献   

17.
为了研究高速列车设备舱内大型通风设备不同通风方式对设备舱通风性能的影响,建立单侧进风单侧出风和双侧进风底部出风两种结构几何模型,采用四面体网格离散计算域,采用通风设备流量进出口边界,采用多孔介质模型处理裙板格栅复杂几何结构,将SIMPLE算法与Realizable k-ε湍流模型相结合,完成不同列车运行速度(400,350,300,250,200km/h)及列车运行方向(上行,下行)等工况下的数值仿真计算,对两种不同通风方式设备舱内速度场、车辆不同运行速度及方向对设备舱裙板格栅进出口风速的影响、通风阻力等进行综合分析。结果表明:相比双侧进风底部出风方式,单侧进风单侧出风方式的设备排风阻力较小,不同进风口高风速与低风速之间差值较大,相邻进风口进风风速变化梯度较大,设备舱内气流组织分布的均匀性较差[1]。  相似文献   

18.
建立了跨坐式单轨车辆头车车体的三维几何模型和有限元模型,并对其进行模态分析,得到了该车体的固有频率和相应的振型.通过对计算结果的分析,指出了设计中可能存在的问题,提出了改进的建议.在低频段的外界激励下,车体的整体振动并不强烈,主要是裙板部分产生较大的振动;为抑制其振动,可采用前、中、后裙板之间进行连接并在后裙板与铝地板...  相似文献   

19.
文章采用动模型试验与三维流场数值模拟方法,对某型城际动车组在无前导流罩、无裙板、无底板,有前导流罩、无裙板、无底板,有前导流罩、有裙板、有底板3种情况下,以250km/h通过净隧道时引起的阻力变化及瞬变压力变化问题进行了研究,得出了列车前导流罩、裙板以及底板对整车气动阻力及瞬变压力的影响规律。列车通过隧道时,前导流罩、裙板以及底板对其阻力有明显的影响。前导流罩对列车整体空气动力学性能影响很大,有前导流罩破坏了列车车头的整体流线型,严重影响了列车的气动性能。裙板及底板对列车阻力影响较大,对压力波影响相对较小。有前导流罩、有裙板、有底板列车的空气动力学性能明显优于无前导流罩、无裙板、无底板和有前导流罩、无裙板、无底板的列车的空气动力学性能。  相似文献   

20.
同步碎石应力吸收层路用性能的研究   总被引:1,自引:0,他引:1  
主要对沥青加铺层结构组合中的同步碎石应力吸收层进行试验研究,通过粘结性试验、低温抗裂性试验、不同结构组合加铺层反射裂缝MTS疲劳试验等,评价同步碎石应力吸收层的路用性能;通过相关试验结果证明同步碎石应力吸收层具有良好的粘结性、低温抗裂性、抗拉伸疲劳性和防水性,是一种性能优良的新型应力吸收层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号