首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
周文 《中外公路》2012,32(4):165-170
汉宜铁路蔡家湾汉江特大桥主桥为64+120+168+120+56m5跨预应力混凝土连续刚构桥,主桥设计为双线铁路,上部结构为单箱单室结构;下部结构为圆端形实体桥墩,其中主墩为双薄壁圆端形墩身,钻孔桩+承台基础。该文主要介绍其基础、下部结构及上部结构的主要施工技术特点和主要施工技术控制措施。  相似文献   

2.
依托青岛市地铁8号线工程的实际应用,采用midas Civil 2015软件对圆端形花瓶墩进行了空间受力分析,对墩顶瓶口段计算方法及配筋方式进行分析总结。计算结果验证了《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG 3362—2018)中拉压杆模型构形的合理性,为此后同类结构计算提供一定参考。  相似文献   

3.
广东佛山龙翔大桥主航道桥为(118+2×202+93)m连续梁桥,主墩均采用圆端形承台(尺寸为39.25 m×17.5m×5.0m).3号、4号主墩位于水中,均采用无现浇封底混凝土的钢-混组合吊箱围堰施工,围堰主体结构为混凝土底板-钢板桩壁体组合.在围堰施工过程中,混凝土底板及钢壁体在加工场内分块加工并运输至墩位,逐块...  相似文献   

4.
新建精伊霍铁路阿克巴斯套撒依大桥3#、4#、5#墩为圆端形空心高墩。根据当地条件及现场施工要求,本项目采用人工翻转模板与脚手架相结合、混凝土输送泵运送混凝土、卷扬机和倒链吊运材料和模板的施工方法,节约了成本,控制了工期。文章中主要介绍了几种施工工艺的优缺点、翻模施工的工艺原理及控制要点。  相似文献   

5.
苏通大桥辅桥主墩承台大体积混凝土施工温度控制   总被引:1,自引:0,他引:1  
贾应春  崔清强 《桥梁建设》2006,(Z1):101-104
提出大体积混凝土结构施工温控的思路和工作流程。介绍苏通大桥辅桥主墩承台大体积混凝土施工温控的施工方案决策计算结果及施工过程控制计算,并与温度监测结果进行了对比分析。对类似工程具有一定的指导意义。  相似文献   

6.
《公路》2021,66(6):109-115
泥石流冲毁桥墩对桥梁的危害巨大。借助数值模拟分析手段,研究不同截面形式的桥墩在泥石流冲击作用下的差异。综合分析泥石流流域、桥墩受到的冲击压强、冲击力以及拉应力,得到泥石流作用下最优桥墩选型。研究表明,不同截面的桥墩对泥石流浆体的分布影响较大,圆端形墩和尖端形墩的排导能力优于矩形墩;不同截面形状的桥墩受到的冲击力差异明显,矩形墩对泥石流的阻力普遍大于圆端形墩和尖端形墩。综合模拟结果分析,建议在泥石流易发区域架设桥梁时,应优先选择圆形或者圆端形墩。  相似文献   

7.
张昕 《城市道桥与防洪》2013,(7):202-204,18
该文介绍了泐马河大桥工程的施工控制技术。根据泐马河大桥V形墩及0号墩的施工特点,研究确定了以V墩外支架的变形监测,与V墩及0号段结构关键控制断面的应力监测相结合的施工控制方法。工程实践表明,无论是结构线形状态还是控制断面的应力,实测结果与理论计算结果吻合较好,施工控制效果良好,能为同类型桥梁施工控制提供参考。  相似文献   

8.
《公路》2017,(6)
在大跨径桥梁施工过程中,温度变化直接影响到结构的变形和内力,不可忽视。因此需要大量的实时监测,与仿真理论计算值做比较,在各个施工阶段对理论材料参数进行修正,避免误差累积,从而使施工控制计算与实际施工相符。结合柴埠大桥的实际监测工作,对混凝土斜拉桥施工过程中的日照温度效应影响问题进行分析,并对施工中主梁温度膨胀系数提出了主动修正的方法,为类似工程提供参考。  相似文献   

9.
结合海南洋浦大桥某主墩承台大体积混凝土温控项目,利用通用有限元软件ANSYS建立了桥梁承台大体积混凝土温度场分析模型,并对承台混凝土进行了实际的温度监测.通过对有限元计算结果和实际监测结果的分析,可知二者较为吻合,2个监测断面的温度-时间曲线规律一致,在混凝土浇注60~ 70 h左右温度达到峰值,15 d后趋于常温;2个监测断面温度场的分布规律一致,在承台边缘2 m范围内温度梯度较大,其他内部区域温度分布比较均匀.因此,在以后的工程中,可以利用ANSYS有限元分析软件,对施工期的温度场进行理论分析.  相似文献   

10.
圆形空心墩日照温度效应分析   总被引:6,自引:0,他引:6  
用热弹性理论分析了混凝土圆形空心墩的日照温度效应问题,推导出了圆形空心墩温度应力分布的弹性理论解,并提出了墩顶温度位移的计算公式。所得理论解比传统计算方法精度更高,计算更简便。  相似文献   

11.
胡勇 《桥梁建设》2021,51(2):1-9
常泰长江大桥主航道桥为主跨1 176 m公铁合建斜拉桥,桥塔基础采用沉井方案.为降低沉井自重和减少桥墩局部冲刷,采用理论分析、数值模拟与水槽冲刷试验相结合的方式对沉井基础型式进行研究.结果表明:在圆端形、梭形及矩形3种截面型式的沉井中,圆端形截面沉井的水流阻力系数最小;台阶型沉井相比传统沉井可以削弱墩前向下旋辊及减小墩...  相似文献   

12.
呼准铁路黄河特大桥主桥为(98+5×168+98)m预应力混凝土刚构—连续组合箱梁桥.主梁采用C55混凝土单箱单室变截面箱梁,三向预应力体系,在箱梁内预留体外预应力钢束张拉构件.主墩均采用圆端形截面空心墩(中间2个桥墩与主梁固结),摩擦桩基础.为适应主梁较大的温度伸缩量,开发了大位移伸缩装置及大位移活动支座.采用MIDAS Civil软件对该桥进行静、动力分析,分析结果表明,该桥在施工及运营阶段的刚度、强度均满足规范要求,且具有良好的抗震性能.该桥采用悬臂浇筑法施工,主梁合龙顺序为先边跨后中跨.  相似文献   

13.
将金山特大桥高墩大跨连续梁桥设计   总被引:3,自引:2,他引:1  
将金山特大桥主桥由一跨32m预应力混凝土T梁桥和(60.75+4×100+60.75)m预应力连续梁桥组成。预应力连续梁桥主梁采用单箱单室直腹板变截面箱形梁,设置三向预应力体系。采用恒载与1/2活载所产生的挠度之和对主梁反向设置预拱度。在各活动支座处设顺桥向水平预偏值。采用圆端形桥墩,1号墩为实体墩,2~6号墩为空心墩,均采用群桩基础。采用BSAS V3.76软件对主梁进行平面静力分析,采用桥梁博士软件分析箱梁截面横向受力并对3种车型通过桥梁时的车桥系统空间动力响应进行计算。计算结果表明:桥梁设计均满足规范要求,桥梁具有良好的动力特性及列车走行性,列车通过桥梁时的安全性和乘坐舒适性均满足要求。  相似文献   

14.
蔡文波  张铭  陈卉  廖原  张家元  岳磊 《世界桥梁》2013,41(1):5-8,25
武汉三官汉江公路大桥主桥为主跨190 m的双塔预应力混凝土部分斜拉桥,介绍该桥主桥设计与施工.主桥采用塔、墩、梁固结体系;主梁采用大悬臂变截面预应力混凝土连续箱梁;桥塔设计为古琴造型,采用独柱形四面镂空截面形式,索塔锚固采用单根可更换式锚固系统;斜拉索采用竖琴式中央索面布置;主墩采用实体双薄壁圆倒角矩形墩、钻孔灌注桩基础.主墩承台采用钢管桩围堰施工,墩身及塔柱采用爬模施工,主梁采用悬臂浇筑法施工.  相似文献   

15.
苏通大桥南塔墩承台超大体积混凝土施工温控关键技术   总被引:8,自引:0,他引:8  
苏通大桥南主塔墩承台为超大体积混凝土,为防止出现温度裂缝,施工中采取了合理分层、双掺技术、内散外蓄、温度应力监测等温度控制措施,有效地控制了混凝土的最高温升和内外温差,施工后的承台质量,达到内实外美,未产生温度裂缝,并根据实际监测数据与温控理论计算进行了对比分析。  相似文献   

16.
查进  周明凯  刘俊 《公路》2007,(3):129-131
以薄壁空心墩底座高强大体积混凝土为研究对象,采用计算机有限元程序模拟计算不同施工情况下混凝土内部的温度和应力,研究不同施工情况下混凝土的抗裂安全系数,为实际施工中防止混凝土产生温度裂缝提供理论依据。  相似文献   

17.
《公路》2017,(12)
目前,预应力混凝土箱梁宽跨比越来越大,依据平面杆系理论计算结果已较难体现结构空间效应。采用实体单元对3跨连续梁进行全桥精细化分析,着重考察箱梁墩顶顶板、边跨跨中底板及边支座附近应力状态,计算结果表明:梁单元和实体单元计算差异较大,实体单元模拟更接近宽箱梁实际应力状态。  相似文献   

18.
方志 《城市道桥与防洪》2019,(2):76-80,M0009,M0010
结合某互通立交实体薄壁花瓶型桥墩墩顶混凝土在施工完成后不久即发生开裂的现象,采用三维空间有限元仿真模型,对该型桥墩结构进行了细致的应力分析和开裂模拟。结果表明,由于墩顶横向受拉配筋不足导致墩顶混凝土开裂。设计中应重视实体薄壁花瓶型桥墩的横向受力分析,在未有可靠计算方法的情况下,建议采用空间有限元方法进行分析并指导花瓶型桥墩的配筋设计。  相似文献   

19.
宜昌庙嘴长江大桥工程桥塔墩承台及锚碇均为大体积混凝土结构,为防止施工过程中结构出现危害性裂缝,对其进行温度控制。基于现行规范和设计要求,提出可行的温控控制标准,采用 MIDAS 水化热模块计算混凝土的温度场和应力场,根据计算结果及相关经验制定冷却水自循环控制系统及其它混凝土表面养护和内部降温等措施,温控过程中布置温度测点实时监测混凝土内、外部的温度,并与计算值进行对比。结果表明,混凝土浇筑体最高温度值、里表温差、降温速率等温度控制指标均满足设计和规范要求,该桥采用针对性强、科学合理的控制措施,有效地降低了大体积混凝土内外温差,在已完成的各桥塔墩承台及锚碇基础部分均未发现明显裂缝。  相似文献   

20.
为了防止主墩承台大体积混凝土因为温度应力而引起危害裂缝,采用有限元仿真软件模拟并且计算了工程实际环境下混凝土内部温度及温度应力随龄期的变化趋势。根据模拟结果通过在混凝土内部铺设冷却水管,同时在施工阶段埋设温度传感器来动态监控混凝土内最高、最低温度及内外表面温差,监测数据表明承台混凝土最高温度54. 8℃,最大内外表面温差20℃,混凝土未出现裂缝。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号