首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Congestion pricing is one of the widely contemplated methods to manage traffic congestion. The purpose of congestion pricing is to manage traffic demand generation and supply allocation by charging fees (i.e., tolling) for the use of certain roads in order to distribute traffic demand more evenly over time and space. This study presents a framework for large-scale variable congestion pricing policy determination and evaluation. The proposed framework integrates departure time choice and route choice models within a regional dynamic traffic assignment (DTA) simulation environment. The framework addresses the impact of tolling on: (1) road traffic congestion (supply side), and (2) travelers’ choice dimensions including departure time and route choices (demand side). The framework is applied to a simulation-based case study of tolling a major freeway in Toronto while capturing the regional effects across the Greater Toronto Area (GTA). The models are developed and calibrated using regional household travel survey data that reflect the heterogeneity of travelers’ attributes. The DTA model is calibrated using actual traffic counts from the Ontario Ministry of Transportation and the City of Toronto. The case study examined two tolling scenarios: flat and variable tolling. The results indicate that: (1) more benefits are attained from variable pricing, that mirrors temporal congestion patterns, due to departure time rescheduling as opposed to predominantly re-routing only in the case of flat tolling, (2) widespread spatial and temporal re-distributions of traffic demand are observed across the regional network in response to tolling a significant, yet relatively short, expressway serving Downtown Toronto, and (3) flat tolling causes major and counterproductive rerouting patterns during peak hours, which was observed to block access to the tolled facility itself.  相似文献   

2.
Pricing is considered an effective management policy to reduce traffic congestion in transportation networks. In this paper we combine a macroscopic model of traffic congestion in urban networks with an agent-based simulator to study congestion pricing schemes. The macroscopic model, which has been tested with real data in previous studies, represents an accurate and robust approach to model the dynamics of congestion. The agent-based simulator can reproduce the complexity of travel behavior in terms of travelers’ choices and heterogeneity. This integrated approach is superior to traditional pricing schemes. On one hand, traffic simulators (including car-following, lane-changing and route choice models) consider travel behavior, i.e. departure time choice, inelastic to the level of congestion. On the other hand, most congestion pricing models utilize supply models insensitive to demand fluctuations and non-stationary conditions. This is not consistent with the physics of traffic and the dynamics of congestion. Furthermore, works that integrate the above features in pricing models are assuming deterministic and homogeneous population characteristics. In this paper, we first demonstrate by case studies in Zurich urban road network, that the output of a agent-based simulator is consistent with the physics of traffic flow dynamics, as defined by a Macroscopic Fundamental Diagram (MFD). We then develop and apply a dynamic cordon-based congestion pricing scheme, in which tolls are controlled by an MFD. And we investigate the effectiveness of the proposed pricing scheme. Results show that by applying such a congestion pricing, (i) the savings of travel time at both aggregated and disaggregated level outweigh the costs of tolling, (ii) the congestion inside the cordon area is eased while no extra congestion is generated in the neighbor area outside the cordon, (iii) tolling has stronger impact on leisure-related activities than on work-related activities, as fewer agents who perform work-related activities changed their time plans. Future work can apply the same methodology to other network-based pricing schemes, such as area-based or distance-traveled-based pricing. Equity issues can be investigated more carefully, if provided with data such as income of agents. Value-of-time-dependent pricing schemes then can also be determined.  相似文献   

3.
Empirical studies showed that travel time reliability, usually measured by travel time variance, is strongly correlated with travel time itself. Travel time is highly volatile when the demand approaches or exceeds the capacity. Travel time variability is associated with the level of congestion, and could represent additional costs for travelers who prefer punctual arrivals. Although many studies propose to use road pricing as a tool to capture the value of travel time (VOT) savings and to induce better road usage patterns, the role of the value of reliability (VOR) in designing road pricing schemes has rarely been studied. By using road pricing as a tool to spread out the peak demand, traffic management agencies could improve the utility of travelers who prefer punctual arrivals under traffic congestion and stochastic network conditions. Therefore, we could capture the value of travel time reliability using road pricing, which is rarely discussed in the literature. To quantify the value of travel time reliability (or reliability improvement), we need to integrate trip scheduling, endogenous traffic congestion, travel time uncertainty, and pricing strategies in one modeling framework. This paper developed such a model to capture the impact of pricing on various costs components that affect travel choices, and the role of travel time reliability in shaping departure patterns, queuing process, and the choice of optimal pricing. The model also shows the benefits of improving travel time reliability in various ways. Findings from this paper could help to expand the scope of road pricing, and to develop more comprehensive travel demand management schemes.  相似文献   

4.
A number of studies have shown that in addition to travel time and cost as the common influences on mode, route and departure time choices, travel time variability plays an increasingly important role, especially in the presence of traffic congestion on roads and crowding on public transport. The dominant focus of modelling and implementation of optimal pricing that incorporates trip time variability has been in the context of road pricing for cars. The main objective of this paper is to introduce a non-trivial extension to the existing literature on optimal pricing in a multimodal setting, building in the role of travel time variability as a source of disutility for car and bus users. We estimate the effect of variability in travel time and bus headway on optimal prices (i.e., tolls for cars and fares for buses) and optimal bus capacity (i.e., frequencies and size) accounting for crowding on buses, under a social welfare maximisation framework. Travel time variability is included by adopting the well-known mean–variance model, using an empirical relationship between the mean and standard deviation of travel times. We illustrate our model with an application to a highly congested corridor with cars, buses and walking as travel alternatives in Sydney, Australia. There are three main findings that have immediate policy implications: (i) including travel time variability results in higher optimal car tolls and substantial increases in toll revenue, while optimal bus fares remain almost unchanged; (ii) when bus headways are variable, the inclusion of travel time variability as a source of disutility for users yields higher optimal bus frequencies; and (iii) including both travel time variability and crowding discomfort leads to higher optimal bus sizes.  相似文献   

5.
This paper investigates the role of transport pricing in network design and describes two facts about flow pattern in a transportation system. The first, illustrated by an example of Braess paradox, is that adding a new link to the network does not necessarily minimize the total travel time. The second is that introducing of appropriate toll pricing may reduce not only the total network time but also the travel time for each individual traveller. It follows with the investigations of different system objectives and different pricing policies (only toll pricing and distance‐based pricing are considered), and shows how they affect the system performance and flow pattern. Lastly, a systematic optimization process is proposed for integrated planning of transport network and pricing policies.  相似文献   

6.
This study is the first in the literature to model the joint equilibrium of departure time and parking location choices when commuters travel with autonomous vehicles (AVs). With AVs, walking from parking spaces to the work location is not needed. Instead, AVs will drop off the commuters at the workplace and then drive themselves to the parking spaces. In this context, the equilibrium departure/arrival profile is different from the literature with non-autonomous vehicles (non-AVs). Besides modeling the commuting equilibrium, this study further develops the first-best time-dependent congestion tolling scheme to achieve the system optimum. Also, a location-dependent parking pricing scheme is developed to replace the tolling scheme. Furthermore, this study discusses the optimal parking supply to minimize the total system cost (including both the travel cost and the social cost of parking supply) under either user equilibrium or system optimum traffic flow pattern. It is found that the optimal planning of parking can be different from the non-AV situation, since the vehicles can drive themselves to parking spaces that are further away from the city center and walking of commuters is avoided. This paper sheds light on future parking supply planning and traffic management.  相似文献   

7.
Instead of charging tolls on individual links, this paper considers doing the same on paths. Path and link tolls are “valid” if they encourage motorists to use routes that collectively lead to a target distribution, e.g., one that minimizes travel delay. Because the numbers of valid link and path tolls are typically infinite, an objective in pricing tolls is to find a set of valid tolls that yields the least revenue to lessen the financial burden on motorists.Path tolls are generally more flexible than link tolls and this paper shows that this flexibility can substantially reduce the financial burden on motorists. Additionally, valid path tolls yielding the least revenue possess characteristics with interesting policy implications. To determine these path tolls, it is natural to formulate the problem as a mathematical program with complementarity constraints. However, this paper also investigates alternative formulations that highlight the problem’s complexity and suggest ways to solve the problem efficiently.  相似文献   

8.
This paper provides a modeling framework based on the system dynamics approach by which policy makers can understand the dynamic and complex nature of traffic congestion within a transportation socioeconomic system representation of a metropolitan area. This framework offers policy makers an assessment platform that focuses on the short- and long-term system behaviors arising from an area-wide congestion pricing policy along with other congestion mitigation policies. Since only a few cities in the world have implemented congestion pricing and several are about to do so, a framework that helps policy makers to understand the impacts of congestion pricing is currently quite relevant. Within this framework, improved bus and metro capacities contribute to the supply dynamics which in turn affect the travel demand of individuals and their choice of different transportation modes. Work travel and social networking activities are assumed to generate additional travel demand dynamics that are affected by travelers’ perception of the level of service of the different transportation modes, their perception of the congestion level, and the associated traveling costs. It is assumed that the, population, tourism and employment growth are exogenous factors that affect demand. Furthermore, this paper builds on a previously formulated approach where fuzzy logic concepts are used to represent linguistic variables assumed to describe consumer perceptions about transportation conditions.  相似文献   

9.
Congestion pricing schemes have been traditionally derived based on analytical representations of travel demand and traffic flows, such as in bottleneck models. A major limitation of these models, especially when applied to urban networks, is the inconsistency with traffic dynamics and related phenomena such as hysteresis and the capacity drop. In this study we propose a new method to derive time-varying tolling schemes using the concept of the Network Fundamental Diagram (NFD). The adopted method is based on marginal cost pricing, while it also enables to account realistically for the dynamics of large and heterogeneous traffic networks. We derive two alternative cordon tolls using network-aggregated traffic flow conditions: a step toll that neglects the spatial distribution of traffic by simply associating the marginal costs of any decrease in production within the NFD to the surplus of traffic; and a step toll that explicitly accounts for how network performance is also influenced by the spatial variance in a 3D-NFD. This pricing framework is implemented in the agent-based simulation model MATSim and applied to a case study of the city of Zurich. The tolling schemes are compared with a uniform toll, and they highlight how the inhomogeneous distribution of traffic may compromise the effectiveness of cordon tolls.  相似文献   

10.
This paper extends the bottleneck model to study congestion behavior of morning commute and its implications to transportation economics. The proposed model considers simultaneous route and departure time choices of heterogenous users who are distinguished by their valuation of travel time and punctual arrival. Moreover, two dynamic system optima are considered: one minimizes system cost in the unit of monetary value (i.e., the conventional system optimum, or SO) and the other minimizes system cost in the unit of travel time (i.e., the time-based SO, or TSO). Analytical solutions of no-toll equilibrium, SO and TSO are provided and the welfare effects of the corresponding dynamic congestion pricing options are examined, with and without route choice. The analyses suggest that TSO provides a Pareto-improving solution to the social inequity issue associated with SO. Although a TSO toll is generally discriminatory, anonymous TSO tolls do exist under certain circumstances. Unlike in the case with homogenous users, an SO toll generally alters users’ route choices by tolling the poorer users off the more desirable road, which worsens social inequity. Numerical examples are presented to verify analytical results.  相似文献   

11.
Yang  Hai 《Transportation》1999,26(3):299-322
When drivers do not have complete information on road travel time and thus choose their routes in a stochastic manner or based on their previous experience, separate implementations of either route guidance or road pricing cannot drive a stochastic network flow pattern towards a system optimum in a Wardropian sense. It is thus of interest to consider a combined route guidance and road pricing system. A road guidance system could reduce drivers' uncertainty of travel time through provision of traffic information. A driver who is equipped with a guidance system could be assumed to receive complete information, and hence be able to find the minimum travel time routes in a user-optimal manner, while marginal-cost road pricing could drive a user-optimal flow pattern toward a system optimum. Therefore, a joint implementation of route guidance and road pricing in a network with recurrent congestion could drive a stochastic network flow pattern towards a system optimum, and thus achieve a higher reduction in system travel time. In this paper the interaction between route guidance and road pricing is modeled and the potential benefit of their joint implementation is evaluated based on a mixed equilibrium traffic assignment model. The private and system benefits under marginal-cost pricing and varied levels of market penetration of the information systems are investigated with a small and a large example. It is concluded that the two technologies complement each other and that their joint implementation can reduce travel time more efficiently in a network with recurrent congestion.  相似文献   

12.
Road pricing is a policy measure recommended by transport planners and economists, but considered infeasible by many due to political and public resistance. The Trondheim experience demonstrates how a crude road pricing scheme can be implemented in a moderately congested city while paying heed to democratic decision-making. Fair and democratic procedure requires that the planning include a responsive citizen participation process, that the political parties feed all the viewpoints of the main interest groups into the City Council decision-making, and that the public debate be open and admit all groups mass media coverage. Lessons from the Trondheim toll ring case are offered concerning (1) interests and coalition building, (2) pro and con arguments, (3) the viability of democratic procedure, (4) frequent forms of manipulation, and (5) main issues of design and revenue spending.  相似文献   

13.
The objective of this study is to examine the effect of road pricing on people’s tendency to adapt their current travel behavior. To this end, the relationship between changes in activity-travel behavior on the one hand and public acceptability and its most important determinants on the other are investigated by means of a stated adaptation experiment. Using a two-stage hierarchical model, it was found that behavioral changes themselves are not dependent on the perceived acceptability of road pricing itself, and that only a small amount of the variability in the behavioral changes were explained by socio-cognitive factors. The lesson for policy makers is that road pricing charges must surpass a minimum threshold in order to entice changes in activity-travel behavior and that the benefits of road pricing should be clearly communicated, taking into account the needs and abilities of different types of travelers. Secondly, earlier findings concerning the acceptability of push measures were validated, supporting transferability of results. In line with other studies, effectiveness, fairness and personal norm all had a significant direct impact on perceived acceptability. Finally, the relevance of using latent factors rather than aggregate indicators was underlined.  相似文献   

14.
Path-differentiated congestion pricing is a tolling scheme that imposes tolls on paths instead of individual links. One way to implement this scheme is to deploy automated vehicle identification sensors, such as toll tag readers or license plate scanners, on roads in a network. These sensors collect vehicles’ location information to identify their paths and charge them accordingly. In this paper, we investigate how to optimally locate these sensors for the purpose of implementing path-differentiated pricing. We consider three relevant problems. The first is to locate a minimum number of sensors to implement a given path-differentiated scheme. The second is to design an optimal path-differentiated pricing scheme for a given set of sensors. The last problem is to find a path differentiated scheme to induce a given target link-flow distribution while requiring a minimum number of sensors.  相似文献   

15.
Some travel demand management policies such as road pricing have been widely studied in literature. Rationing policies, including vehicle ownership quota and vehicle usage restrictions, have been implemented in several megaregions to address congestion and other negative transportation externalities, but not well explored in literature. Other strategies such as Vehicle Mileage Fee have not been well accepted by policy makers, but attract growing research interest. As policy makers face an increasing number of policy tools, a theoretical framework is needed to analyze these policies and provide a direct comparison of their welfare implications such as efficiency and equity. However, such a comprehensive framework does not exist in literature. To bridge this gap, this study develops an analytical framework for analyzing and comparing travel demand management policies, which consists of a mathematical model of joint household vehicle ownership and usage decisions and welfare analysis methods based on compensating variation and consumer surplus. Under the assumptions of homogenous users and single time period, this study finds that vehicle usage rationing performs better when relatively small percentages of users (i.e. low rationing ratio) are rationed off the roads and when induced demand elasticity resulting from congestion mitigation is low. When the amount of induced demand exceeds a certain level, it is shown analytically that vehicle usage restrictions will always cause welfare losses. When the policy goal is to reduce vehicle travel by a fixed portion, road pricing provides a larger welfare gain. The performance of different policies is influenced by network congestion and congestibility. This paper further generalizes the model to consider heterogenous users and demonstrates how it can be applied for policy analysis on a real network after careful calibration.  相似文献   

16.
Optimal toll design from a network reliability point of view is addressed in this paper. Improving network reliability is proposed as a policy objective of road pricing. A reliability‐based optimal toll design model, where on the upper level network performance including travel time reliability is optimized, while on the lower level a dynamic user‐equilibrium is achieved, is presented. Road authorities aim to optimize network travel time reliability by setting tolls in a network design problem. Travelers are influenced by these tolls and make route and trip decisions by considering travel times and tolls. Network performance reliability is analyzed for a degradable network with elastic and fluctuated travel demand, which integrates reliability and uncertainty, dynamic network equilibrium models, and Monte Carlo methods. The proposed model is applied to a small hypothesized network for which optimal tolls are derived. The network travel time reliability is indeed improved after implementing optimal tolling system. Trips may have a somewhat higher, but more reliable, travel time.  相似文献   

17.
After the widespread deployment of Advanced Traveler Information Systems, there exists an increasing concern about their profitability. The costs of such systems are clear, but the quantification of the benefits still generates debate. This paper analyzes the value of highway travel time information systems. This is achieved by modeling the departure time selection and route choice with and without the guidance of an information system. The behavioral model supporting these choices is grounded on the expected utility theory, where drivers try to maximize the expected value of their perceived utility. The value of information is derived from the reduction of the unreliability costs as a consequence of the wiser decisions made with information. This includes the reduction of travel times, scheduling costs and stress. This modeling approach allows assessing the effects of the precision of the information system in the value of the information.Different scenarios are simulated in a generic but realistic context, using empirical data measured on a highway corridor accessing the city of Barcelona, Spain. Results show that travel time information only has a significant value in three situations: (1) when there is an important scheduled activity at the destination (e.g. morning commute trips), (2) in case of total uncertainty about the conditions of the trip (e.g. sporadic trips), and (3) when more than one route is possible. Information systems with very high precision do not produce better results. However, an acceptable level of precision is completely required, as information systems with very poor precision may even be detrimental. The paper also highlights the difference between the user value and the social value of the information. The value of the information may not benefit only the user. For instance, massive dissemination of travel time information contributes to the reduction of day-to-day travel time variance. This favors all drivers, even those without information. In these situations travel time information has the property that its social benefits exceed private benefits (i.e. information has positive externalities). Of course, drivers are only willing to cover costs equal or smaller than their private benefits, which in turn may justify subsidies for information provision.  相似文献   

18.
Autonomous and connected vehicles are expected to enable new tolling mechanisms, such as auction-based tolls, for allocating the limited roadway capacity. This research examines the public perception of futuristic auction-based tolling systems, with a focus on the public acceptance of such systems over current tolling practices on highways (e.g., dynamic and fixed tolling methodologies). Through a stated-preference survey, responses from 159 road-users residing in Virginia are elicited to understand route choice behavior under a descending price auction implemented on a hypothetical two-route network. Analysis of the survey data shows that there is no outright rejection of the presented auction-based tolling among those who are familiar with the current tolling methods. While males strongly support the new method, no clear pattern emerges among other demographic variables such as income and education level, and age. While high income respondents and regular commuters are more likely to pay higher tolls, no statistical significance between different genders, age groups, household sizes, and education levels is found. Based on the modeling results and the hypothetical road network, it is found that descending price tolling method yields higher average toll rates, and generates at least 70% more revenue when travel time saving is 30 min, and improves capacity utilization of the toll road significantly compared to fixed tolls.  相似文献   

19.
Pricing of roadways opens doors for infrastructure financing, and congestion pricing seeks to address inefficiencies in roadway operations. This paper emphasizes the revenue-generation opportunities and welfare impacts of flat-tolling schemes, standard congestion pricing, and credit-based congestion pricing policies. While most roadway investment decisions focus on travel time savings for existing trips, this work turns to logsum differences (which quantify changes in consumer surplus) for nested logit specifications across two traveler types, two destinations, three modes and three times of day, in order to arrive at welfare- and revenue-maximizing solutions. This behavioral specification is quite flexible, and facilitates benefit-cost calculations (as well as equity analysis), as demonstrated in this paper.The various cases examined suggest significant opportunities for financing new roadway investment while addressing congestion and equity issues, with net gains for both traveler types. Application results illustrate how, even after roadway construction and maintenance costs are covered, receipts may remain to distribute to eligible travelers so that typical travelers can be made better off than if a new, non-tolled road had been constructed. Moreover, tolling both routes (new and old) results in substantially shorter payback periods (5 versus 20 years) and higher welfare outcomes (in the case of welfare-maximizing tolls with credit distributions to all travelers). The tools and techniques highlighted here illustrate practical methods for identifying welfare-enhancing and cost-recovering investment opportunities, while recognizing multiple user classes and appropriate demand elasticity across times of day, destinations, modes and routes.  相似文献   

20.
The emergence of electric unmanned aerial vehicle (E-UAV) technologies, albeit somewhat futuristic, is anticipated to pose similar challenges to the system operation as those of electric vehicles (EVs). Notably, the charging of EVs en-route at charging stations has been recognized as a significant type of flexible load for power systems, which often imposes non-negligible impacts on the power system operator’s decisions on electricity prices. Meanwhile, the charging cost based on charging time and price is part of the trip cost for the users, which can affect the spatio-temporal assignment of E-UAV traffic to charging stations. This paper aims at investigating joint operations of coupled power and electric aviation transportation systems that are associated with en-route charging of E-UAVs in a centrally controlled and yet dynamic setting, i.e., with time-varying travel demand and power system base load. Dynamic E-UAV charging assignment is used as a tool to smooth the power system load. A joint pricing scheme is proposed and a cost minimization problem is formulated to achieve system optimality for such coupled systems. Numerical experiments are performed to test the proposed pricing scheme and demonstrate the benefits of the framework for joint operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号