首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 182 毫秒
1.
针对网联车辆与普通车辆构成的异质交通流,考虑网联车辆车对车(V2V)、车对基础设施(V2I)不同通信技术,研究复杂异质交通流稳定性.基于李雅普诺夫理论,分析对比不同通信技术下网联车辆与普通车辆构成的异质交通流稳定性;基于V2V、V2V/V2I的网联车辆和普通车辆以不同比例混合时,进行异质交通流稳定性判别及稳定域解析.通过数值仿真,验证理论解析的正确性.研究结果表明,基于V2V/V2I的网联车辆比基于V2V的网联车辆混入对异质交通流稳定性改善效果更显著.基于V2V、V2V/V2I的网联车辆同时汇入普通车辆交通流的情况下,当基于V2V的网联车辆比例较低时,不会明显提高异质交通流稳定性;而基于 V2V/V2I的网联车辆即使在低比例时,也会显著改善交通流稳定性;且基于V2V网联车辆比例较低时,平衡态临界速度值随着基于V2V/V2I网联车辆的比例增加近似呈线性减小.  相似文献   

2.
交通流稳定性分析是研究交通拥堵形成机理、车队队列控制的基础,面向智能网联环境下的混合交通流队列线性稳定性分析已成为近年来的研究热点. 根据受到的扰动大小和范围,介绍了线性稳定性、非线性稳定性、局部稳定性和队列稳定性的相关概念,并指出了交通流队列稳定性的基本判别准则. 基于控制理论,回顾了交通流车队队列线性稳定性条件的经典解析方法,其中,特征方程法评估了交通流内部扰动的增长速度,传递函数法依托于拉普拉斯变换构建了扰动的传递关系. 从经典跟驰模型、考虑时延的跟驰模型和考虑多前车驾驶信息反馈的跟驰模型出发,系统分析并总结了国内外学者对于混合交通流稳定性问题的研究现状,同时回顾了交通流稳定性理论研究在车队队列控制等方面的实验和工程应用. 最后,展望了混合交通流稳定性分析领域的研究前景,指出了在后车跟驰行为、智能网联汽车的交互协同、复杂混合交通流等几个方面是今后需要重点研究的领域.   相似文献   

3.
为探究智能网联自动驾驶车辆(Connected and Autonomous Vehicle, CAV)与人工驾驶车辆 (Human Driving Vehicle, HDV)混合行驶的多车道异质交通流运行特征,本文剖析了异质交通流中不同类型车辆的跟驰模式,提出不同类型车辆双车道及多车道换道模型,进而构建了多车道异质交通流仿真模型,并分析了不同CAV混入率下的道路通行能力及换道行为特征。研究结果表明,随着CAV渗透率的提高,单车道通行能力由1678 pcu·h-1提升至4200 pcu·h-1,交通流临界密 度由25 pcu·km-1增长至35 pcu·km-1 ,同一渗透率下不同车道数的道路通行能力及临界密度值呈现显著差异性。异质交通流换道行为呈现三阶段特征:在低密度下,不同类型车辆均可自由行驶及换道;密度在20~100 pcu·km-1 时,车辆换道频率呈“上凸”状,CAV渗透率越高,HDV凸形峰值越大,而CAV峰值较低;在高密度下,受可换道空间的约束,不同类型车辆均无法完成换道。此外,进一步讨论了不同CAV渗透率及密度条件下的异质交通流仿真效益,包括交通量提升及秩序改善特征等。研究成果有助于理解智能网联环境下多车道异质交通流运行状况,为未来异质交通流管理提供理论参考。  相似文献   

4.
分析近年来智能网联环境下交通流波动消除策略的研究进展,根据模型构建的技术手段将其分为三类:跟驰模型稳定性解析控制、交通流波动传播轨迹控制、强化学习驾驶行为优化控制。回顾各类策略的研究现状与模型机理,对比讨论各类控制策略的优势与不足,并从技术背景、研究场景、算法流程和应用理论方面提出智能网联环境下交通流波动消除策略的未来深化研究方向,包括考虑多车道道路环境、交通流微观机理、车辆冲突博弈的复杂情境,考虑宏微观智能网联车控制与交通流主动控制的融合优化,考虑数据缺陷、系统不确定和环境扰动下系统可扩展性和鲁棒性提升,以期为了解交通流波动消除研究进展、提升智能网联环境下交通流波动控制效果提供参考。  相似文献   

5.
车辆轨迹数据蕴含着丰富的时空交通信息,是交通状态估计的基础数据之一. 为解决现有数据采集环境难以获得全样本车辆轨迹的问题,面向智能网联环境,构建了混合交通流全样本车辆轨迹重构模型. 首先,分析了智能网联环境下混合交通流的车辆构成及其轨迹数据采集环境;然后,提出了基于智能驾驶员跟驰模型的车辆轨迹重构模型,实现了对插入轨迹数量、轨迹位置和速度等参数的估计;最后,设计仿真试验验证了模型在不同交通流密度和智能网联车(connected automated vehicle,CAV)渗透率条件下的适用性. 试验结果表明:CAV和网联人工驾驶车(connected vehicle,CV)的渗透率为8%和20%时,该车辆轨迹重构模型在不同交通流密度下均能重构84%以上的车辆轨迹;重构轨迹准确性随着CAV和CV渗透率的增加而提高;当交通密度为70辆/km,且CAV渗透率仅为4%的情况下,模型也能重构82%的车辆轨迹.   相似文献   

6.
为研究车联网环境下异质交通流的演变规律,基于改进的NaSch模型,针对智能网联化程度的前期、中期和后期分别进行仿真实验,得到交通流基本图,并分析通行能力与网联车渗透率的内在联系;其次,通过马尔可夫链证明了网联车形成的有序排列能提高道路通行能力,随机仿真实验验证了理论推导的正确性;最后,引入考虑车辆排列方式的相对熵,从而定量描述异质车流的有序性,阐明了智能网联车辆(connected and autonomous vehicle,CAV)改善交通状况的本质原因. 研究结果表明:随着智能网联车渗透率的增加,通行能力增加,在智能网联化前期,渗透率的增加对通行能力提升较小,最高仅提升23.5%,中、后期通行能力最高能提升125.0%;在一定交通密度下,CAV渗透率与流量呈现正相关,相对熵与流量呈现负相关;智能网联车处于分离态时相对熵较小,分离态对随机混合的通行能力的提升随着CAV渗透率的增加而降低.   相似文献   

7.
分析了网联自动驾驶车辆(CAV)混合交通流中各车辆类型及其跟驰模式下的车头间距,从通用性混合交通流特征层面理论推导了各车头间距模式的概率表达式,从而对混合交通流进行了数学描述;以混合交通流整体通行流率最大为目标,计算了多车道混合交通流中一个CAV专用道的设置条件以及专用道设置后CAV交通流在专用道和混合道上的最优交通流分配比例,将一个CAV专用道情形推广至多个CAV专用道动态管控的一般性情形,构建了混合交通流专用道动态管控的分析方法;应用案例分析论证了CAV专用道管控方法的有效性。研究结果表明:在交通需求为2 000 veh·h-1时,各CAV渗透率阶段均无需设置CAV专用道;在交通需求为3 000 veh·h-1时,需在CAV渗透率为0.2~0.4的阶段下考虑设置CAV专用道;在交通需求为5 000 veh·h-1时,需考虑在各CAV渗透率阶段下设置CAV专用道;提出的CAV专用道管控方法可根据交通需求和车道总数等条件定量化计算不同CAV渗透率阶段下的最优CAV专用道数量以及CAV交通流最优分配比例,且交通需求能够影响反映CAV专用道设置条件的临界CAV渗透率范围,交通需求和车道总数量可分别从交通需求属性和道路空间属性方面促进最优CAV专用道数量的提升,符合多车道场景混合交通流CAV专用道管控的特性。  相似文献   

8.
针对混合交通流中智能网联车辆(Connected and Autonomous Vehicles, CAVs)和人工驾驶车辆的交织干涉问题,本文在传统交通流统计理论模型和一阶连续介质模型的基础上,通过引入智能驾驶员跟驰模型(Intelligent driver model, IDM)和协同自适应巡航控制模型(Cooperative Adaptive Cruise Control, CACC),构建人工驾驶车辆和CAVs的混合交通流偶发拥堵演化模型,探索CAVs混入和诱导干涉措施对混合交通流偶发性拥堵传播规律的影响。实验选取重庆市华陶立交至巴南立交路段为路网原型,对CAVs不同渗透率( Pc )下的路段拥堵演化情况进行仿真。实验结果表明:CAVs渗透率越高,混合流流量、占有率和速度的改善情况越显著,但只有当 Pc ≥ 0.2 时,网联车辆对拥堵消散的改善效果才较为明显;Pc ≤ 0.8 时,干涉措施下,拥堵消散状态的持续时间约为不采用干涉措施的 50%;当 Pc = 1.0 时,网联车辆的通行能力是纯人工驾驶交通流的2.34倍;分别在非干涉措施和干涉措施下计算拥堵评价指标,与仿真结果进行对比,最大相对误差在5.38%之内,验证了模型的准确性。研究成果对疏散交通拥堵具有重要意义。  相似文献   

9.
为了更好地模拟智能网联车辆(CAV)的跟驰特性, 在纵向控制模型(LCM)的基础上考虑V2V环境下多辆前车速度和加速度的影响, 构建了智能网联环境下的纵向控制模型(C-LCM); 对LCM和C-LCM进行稳定性分析, 比较了2个模型的交通流稳定域, 确定了不同通信距离时C-LCM对交通流稳定域的影响; 设计数值仿真试验对加速和减速的常见交通场景进行模拟, 分析了在V2V通信条件下CAV的跟驰行为特征; 仿真分析了CAV不同通信距离以及不同渗透率影响下的交通流安全水平; 构建了包含不同CAV渗透率的混合交通流基本图模型。研究结果表明: 交通流稳定域随着考虑前车数量的增多而增大, 当只考虑1辆前车时, 前车与本车的间隔越远, 车辆速度系数对C-LCM稳定域的影响越大; C-LCM可以提前对多前车的行为做出反应, 更好地模拟CAV的动力学特征, 在减速情景中速度超调量从0.15减少为0.08, 最大速度延迟时间由7.5 s缩短为4.9 s, 在加速情景中速度超调量从0.07减少为0.04, 最小速度延迟时间由3.5 s缩短为2.6 s; 随着CAV渗透率的提升, 交通流的安全水平不断提升, 当通信范围内有4辆CAV时, 交通流的安全性能达到最高, 其TIT和TET指标的最大减少量分别为57.22%和59.08%;随着CAV渗透率的提升, 道路通行能力从1 281 veh·h-1提升为3 204 veh·h-1。可见, 提出的C-LCM可以刻画不同车辆的跟驰特点, 实现混合交通流建模, 并降低混合交通流的复杂性, 为智能网联车辆对交通流的影响分析提供参考。  相似文献   

10.
为研究智能网联车辆(CAV)对交通流稳定性的影响机理,对CAV车辆与人工车辆(HMV)构成的异质交通流,先建立车道管理策略下的交通流分配模型,提出车队管理策略下的车辆编队规模计算方法;再基于CAV与HMV车辆的跟驰模型,运用李雅普诺夫理论,搭建交通流稳定性分析框架;最后,构建异质交通流稳定性判别式,对比分析在不同管理策略下异质交通流稳定性的演变机理。研究结果表明:在随机混行条件下,当车辆速度大于23.12 m/s或CAV车辆的渗透率高于92%时,异质交通流处于恒稳定的状态;在车道管理策略条件下,当CAV车辆的渗透率低于60%时,异质交通流趋于稳定,随着CAV车辆渗透率的增大,通用车道稳定性开始逐级变差;当车辆采取编队控制算法且CAV车辆渗透率大于19%时,异质交通流处于稳定状态。CAV车辆在道路中随机混行,会对交通流的稳定性造成不良影响,而通过车道管理和编队控制,交通流的稳定性得到了明显改善。该研究可为智能网联汽车的安全管控及相关交通规划提供理论指导与借鉴。  相似文献   

11.
基于智能网联车辆(Connected Autonomous Vehicle, CAV)跟驰特性,本文研究CAV跟驰模型.考虑多前车电子节气门角度反馈,构建CAV跟驰模型,并应用稳定性分析方法,推导所提模型稳定性判别条件.以考虑3辆前导车的CAV跟驰模型为例,设计数值仿真实验,分析不同CAV比例时混合交通流的安全性.模型稳定性分析表明:所提模型相比已有模型(CAV的T-FVD模型及常规车辆FVD模型)具备更优的稳定域,且考虑前车数量越多、多前车反馈权重系数越大,所提模型的稳定性越好;相同取值条件下,距离越远处的前车反馈权重系数对所提模型稳定性的影响越大.数值仿真表明,CAV有利于降低交通流的车辆尾部碰撞安全风险.  相似文献   

12.
为充分描述异质交通流条件下的车队离散规律,为信号协调控制提供理论基础,结 合异质交通流条件下的车流特征和Robertson 模型计算速度快的优点,对多股交通流分别建 模,并在此基础上构建异质交通流车队流量离散模型.通过实际调查数据,分析下游交叉口到 达流率分布与上游交叉口离去流率分布之间的关系,并将本文模型和Robertson 模型与实际 数据进行比较分析.结果表明,与Robertson 模型相比,本文模型能够更好地描述异质交通流条 件下的车队离散规律,平均预测均方误差减少了8.29%.  相似文献   

13.
为了精确地模拟车辆跟驰过程,应用相关分析的方法建立一系列跟驰模型,用微积分的方法解析模型.通过变量筛选.明确了影响车辆跟驰的重要因素有速度差、间距和前车速度.通过对模型的解析.确定了模型参数的合理取值范围以确保模拟的稳定.建立的跟驰模型可以模拟不同车辆之间的跟驰行为.预测跟驰车辆的运动状态,用于智能车辆控制或者用于追尾预警.如果获得了更完备的实验数据,基于相关分析建立跟驰模型的方法可以更精确地考虑到车辆运动状况、动力性能、道路条件、驾驶特性等影响因素.  相似文献   

14.
道路条件及密集交通流随机波动是交通扰动的诱因,并可能引发交通流不稳定.提出3个影响交通流稳定性的重要因素——背景交通状况、驾驶员特性、车队均一性.讨论了基于跟车模型导出的交通流稳定性的充分和必要条件,辨析其中各参数的准确含义和各条件之间的相互关系.借助交通流基本图和车辆轨迹线图,分析在各影响因素作用下交通扰动在实际交通流中的演变.  相似文献   

15.
未来协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆和传统车辆混合交通流的稳定性决定了CACC技术对交通拥堵、能耗排放的改善程度.鉴于此,研究不同CACC渗透率时这种混合交通流的稳定性.应用基于轨迹数据标定的IDM(Intelligent Driver Model,IDM)模型和由加州伯克利PATH实验室实车测试验证的CACC模型分别作为传统车辆跟驰模型和CACC车辆跟驰模型.依据传统车辆在扰动下的稳定性,确定高稳态速度和低稳态速度,并考虑两种车型相对数量、相对位置的随机性,设计数值仿真实验.实验结果表明,在高稳态速度下,不同CACC渗透率时混合车队均整体稳定;在低稳态速度下,当CACC渗透率较小时,车队整体不稳定,CACC渗透率需达到50%以上时,才有可能使得混合车队由不稳定转变为稳定.  相似文献   

16.
研究协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车头时距对不同CACC比例下混合交通流稳定性的影响关系,进而为CACC车头时距设计提供参考. 应用优化速度模型(Optimal Velocity Model,OVM)作为手动车辆的跟驰模型,PATH真车实验标定的模型作为CACC车辆的跟驰模型. 基于传递函数理论,推导混合交通流稳定性判别条件,计算关于CACC比例与平衡态速度的混合交通流稳定域. 分析混合交通流在任意速度下稳定所需满足的临界CACC比例与CACC车头时距的解析关系,提出随CACC比例增加的可变 CACC车头时距设计策略,并通过数值仿真实验验证所提可变CACC车头时距策略的正确性. 研究结果表明:在所提可变CACC车头时距策略下,CACC车头时距随CACC比例增加而逐渐降低,避免取值较大影响混合交通流通行能力的提升;当CACC比例大于35%时,混合交通流在任意速度下稳定.研究结果可为大规模CACC真车实验的实施提供理论设计参考.  相似文献   

17.
研究协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车头时距对不同CACC比例下混合交通流稳定性的影响关系,进而为CACC车头时距设计提供参考. 应用优化速度模型(Optimal Velocity Model,OVM)作为手动车辆的跟驰模型,PATH真车实验标定的模型作为CACC车辆的跟驰模型. 基于传递函数理论,推导混合交通流稳定性判别条件,计算关于CACC比例与平衡态速度的混合交通流稳定域. 分析混合交通流在任意速度下稳定所需满足的临界CACC比例与CACC车头时距的解析关系,提出随CACC比例增加的可变 CACC车头时距设计策略,并通过数值仿真实验验证所提可变CACC车头时距策略的正确性. 研究结果表明:在所提可变CACC车头时距策略下,CACC车头时距随CACC比例增加而逐渐降低,避免取值较大影响混合交通流通行能力的提升;当CACC比例大于35%时,混合交通流在任意速度下稳定.研究结果可为大规模CACC真车实验的实施提供理论设计参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号