首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 58 毫秒
1.
城市停车已逐步实现信息化和动态化管理,本文对动态管理模式下大范围路侧泊位占有率预测方法进行研究.在收集美国旧金山492万条停车交易数据的基础上,利用可同时提取数据空间关联和时序趋势特征的卷积长短时记忆神经网络(Convolutional LSTM Network,ConvLSTM),分别构建考虑停车费率和时限动态变化的有政策模型,和没有动态管理信息输入的无政策模型.结果显示,有政策模型的训练效率和预测精度会显著提升.在政策平稳阶段,两种模型均能够有效预测泊位占有率;在政策发生变化时段,无政策模型的预测误差出现激增,但有政策模型的预测误差依然保持平稳,表明本文提出的方法能够很好地应对动态管理模式下停车需求的变化.  相似文献   

2.
针对传统有效停车泊位预测方法无法刻画泊位前后时刻关联关系的问题,采用基于深度学习的LSTM(long short-term memcry)神经网络对其进行改进,提出了LSTM有效停车泊位预测模型,并基于此模型对不同类型的停车区域进行分析与预测.在构建模型的基础上,综合考虑了有效停车泊位预测的时空特性,选取目标区域内多个邻近停车场的历史停车数据组成数据集,并构建有效停车泊位预测的对比模型,以此检验模型的预测精度.研究结果表明:在不同类型停车区域的有效停车泊位预测中,LSTM模型预测结果与真实值一致性较好,预测精度均高于BP预测模型和ARIMA预测模型;LSTM模型在有效停车泊位预测方面可靠且有效.  相似文献   

3.
智能化停车诱导系统有效 停车泊位数据的预测技术研究   总被引:5,自引:1,他引:5  
随着城市停车需求的迅速增加,长期以来隐匿的深层次的城市停车问题日益显现出来.作为智能交通系统的重要组成部分,智能化的停车诱导系统已成为现代城市交通管理中不可或缺的关键内容,而该系统重要参数之一的有效停车泊位数据的准确预测是系统能够成功运转的前提条件.由于目前尚无成熟的技术可以借鉴,如何预侧有效停车泊位数据问题成为摆在研究人员面前的一个技术难点.本文作者经过长期研究,给出了预测有效停车泊位数据的方法,为成功解决这一技术难题提供了思路.  相似文献   

4.
为做好电网供需平衡,进一步改善电网的社会效益和经济效益,根据负荷数据的时序性特征,利用卷积神经网络的特征提取能力和长短期记忆神经网络捕捉时间序列关系的能力,采用卷积-长短期记忆混合神经网络进行电力负荷短期预测.首先根据历史数据对该模型进行训练,然后使用已训练好的模型进行预测,最后将其预测结果与长短期记忆神经网络预测结果进行比对.两组不同采样间隔的负荷预测仿真结果表明,卷积-长短期记忆混合神经网络相对于长短期记忆神经网络,可以更好地从负荷数据中提取出时序性特征,预测误差较小,精度较高,能够在电力短期负荷预测问题中提供可靠的预测结果.  相似文献   

5.
针对停车场有效停车泊位的变化特征,提出了基于灰色—小波神经网络的组合模型.先通过灰色单因素预测模型对有效停车泊位时间序列进行修正处理,再基于分步式小波神经网络模型对修正预测值进行运算,并通过马克科夫链预测模型得到更精确的预测区间,并利用实际案例分析,对模型的预测精度、稳定性、拟合度和训练时间进行了评价.研究表明,灰色—小波神经网络预测模型可降低初始数据波动性的干扰,与传统神经网络相比,预测结果误差波动性降低了10%~19%,稳定性提高了27%~33%,拟合度提高了10%~15%,精确度明显提高.  相似文献   

6.
针对基于深度学习的短期交通流预测问题,揭示了时空相关性建模本质,分析了建模过程中涉及的多尺度时空特性、异质性、动态性、非线性等特点,明确了基于深度学习进行短期交通流预测的核心挑战,阐述了短期交通流预测涉及的外部信息整合、多步预测与单步预测以及单体预测与集成预测等相关问题;按照网格化和拓扑化2种交通流数据组织方式,分别综述了当前最新的基于深度学习的短期交通流预测研究方向。研究结果表明:针对网格化交通流数据,当前研究主要包含了基于2D图像卷积神经网络、基于2D图像卷积神经网络与循环神经网络相结合、基于3D图像卷积神经网络3种预测建模方法;针对拓扑化交通流数据,当前研究主要包含了基于1D因果图像卷积与卷积图神经网络相结合、基于循环神经网络与卷积图神经网络相结合、基于自注意力与卷积图神经网络相结合、基于卷积图神经网络的时空同步学习4种预测建模方法;总体上,基于深度学习方法进行短期交通流预测相较于采用时间序列和经典机器学习方法获得了预测准确性上的极大提升;未来,针对物理理论、知识图谱与深度学习相结合,构建多时空数据挖掘大模型以及轻量化、可解释性、模型结构自动化搜索等维度的相关探索将成为重要研究方...  相似文献   

7.
停车需求预测方法及应用   总被引:4,自引:1,他引:3  
工程领域传统的停车需求预测方法存在两大缺陷,不能保证停车需求总量预测结果处于现实的合理区间,且模糊了停车泊位与车辆之间的内在联系。为了克服这些缺陷,提出了停车泊位总量约束的需求-供应预测方法,将停车需求划分为住宅区内、工作地和访问地3类,根据机动车拥有情况和分目的机动车出行OD进行预测,能够较为细致地预测各类停车需求的空间分布状况。最后,将停车泊位总量约束的需求-供应预测方法应用于《温州市停车发展专项规划》中,证明了该方法的合理性和可行性。  相似文献   

8.
针对机场场面交通可获数据的局限性,为精准提取机场交通数据时空特征及预测场面交通流量。首先,基于推出控制理论,建立机场场面运行数值仿真模型,得到因数据局限无法获取的预测指标;其次,搭建卷积神经网络(CNN)与长短期记忆网络(LSTM)组合预测模型提取时空特征;最后,以河南郑州机场为例进行试验验证,比较模型在不同训练数据量下的预测性能与误差指标,结果表明基于仿真指标的预测模型预测结果精确度高且性能稳定。  相似文献   

9.
风电功率预测对电力系统的稳定运行与经济调度至关重要。为充分挖掘历史数据中的有效信息以提高风电功率短期预测精度,提出一种基于卷积神经网络(convolution neural network,CNN)和长短期记忆(long short-term memory network,LSTM)网络模型的风电功率短期预测方法,利用CNN序列特征提取能力进行有效信息的提取,保留更长的有效记忆信息以解决梯度弥散问题,弥补了LSTM网络模型面对过长序列时出现不稳定与梯度消失现象的不足。用国内某风电场数据进行实验,预测结果表明文中提出的方法与反向传播神经网络和LSTM网络预测方法相比,具有更高的预测精度。  相似文献   

10.
为实现动静态交通和谐统一,构建与停车需求相协调、停车资源时空均衡的路侧泊位动态供给方案,应用图论的方法建立了含有路侧停车网络的车辆运行模型,将路段分为通行路段与路侧停车路段,并根据用户通行性质与运行状态,基于改进的BPR(Bureau of Public Road)函数量化了通行用户与停车用户在常规通行路段和路侧停车路段的通行阻抗。为实现路网整体通行效率最高,以路网中用户总通行时间最短为目标函数,以路网中停车设施利用水平的高效性与空间均衡性为约束,构建了最佳泊位资源配置模型,并应用相继平均算法(Method of Successive Averages, MSA)设计了路网总效率最高的交通流路径分配方案。以典型的Nguyen-Dupuis网络为实例,设计了多模式、动态的停车资源配置方案,量化了用户出行时间与通行需求和停车比例的关系。研究结果表明,当已知路网中的出行起讫点和泊位规划目标时,通过应用该优化求解模型能有效配置路侧停车资源数目,合理规划出行路径,改善用户出行效率。  相似文献   

11.
高斯过程回归短时交通流预测方法   总被引:2,自引:0,他引:2  
已有的短时交通流预测方法均属于确定性预测,无法对预测的不确定性进行定量分析.针对上述问题,提出了一种基于高斯过程回归的短时交通流预测方法.通过该方法在对短时交通流进行预测的同时还可以得到预测的方差估计值,并依此可以确定预测值的95%置信区间.在仿真实例中,在相同条件下对所提方法与支持向量机预测方法进行比较.仿真结果表明,高斯过程回归短时交通流预测方法不仅与支持向量机预测方法具有相近的预测精度,其中均方根误差为12.09,绝对值误差为118.42,相对误差为17.32%,而且能够获得预测结果的方差估计值,从而有效实现短时交通流概率意义上的预测.  相似文献   

12.
智能交通系统是缓解交通拥堵行之有效的手段,精准的交通流预测是其实现的关键所在. 本文考虑路网拓扑结构和交通流时空相关性,提出基于图卷积网络(Graph Convolution Network,GCN)的大规模城市路网短时交通流预测模型,具有较高的预测精度、预测效率和现实解释意义;采用真实大规模城市路网浮动车数据对GCN模型进行测试,结果表明,GCN模型相对于现有模型,在预测性能上有较大提升.  相似文献   

13.
精准且快速的短时交通流预测是智能交通发展的重要组成部分.本文针对当前交通流预测模型不能充分提取交通流数据的时空特征、预测性能容易受到外界干扰因素影响的问题,提出一种基于深度学习的短时交通流预测模型,该模型结合卷积神经网络(Convolutional Neural Network,CNN)与支持向量回归分类器(Support Vector Regression,SVR)的特点:在网络底层应用CNN进行交通流特征提取,并将提取结果输入到SVR回归模型中进行流量预测.为验证模型的有效性,取G103国道的实际交通流量数据进行试验.结果表明,提出的预测模型与传统的预测模型相比具有更高的预测精度,预测性能提高了11%,是一种有效的交通流预测模型.  相似文献   

14.
针对当前路网通行速度预测方法存在的中长周期预测准确性和稳定性不足、自适应路网拓扑空间关系建模能力有待进一步提升等问题,以多尺度卷积算子及门控循环单元为核心单元,提出一种面向路网通行速度预测任务的多周期组件时空神经网络模型。首先,根据路网交通感知数据的周期特性,将其规约为周、日和近期这3种不同粒度的时间-空间-特征三维矩阵,并输入至3个共享网络结构的周期组件。其次,在每部分组件中,利用多尺度卷积核捕获多因素非线性相关性与不同空间视野大小的路网节点空间相关性。然后,对每个路网节点的时序特征使用门控循环单元提取交通数据长时依赖关系,引入残差学习框架,提高网络训练效率并防止梯度弥散。最后,自适应加权融合通过预测卷积层的每部分周期组件预测结果生成预测时段内路网交通通行速度。为验证所提方法的有效性,基于两个公开的交通状态数据集进行实验分析,并选取当前主流的深度神经网络模型作为对比基线模型。结果表明,所提方法在可接受的执行时间内,在两个数据集上平均绝对误差、平均平方误差和平均绝对百分比误差分别为 2.55、3.94 和 10.75%,1.57、3.52和3.44%,在预测准确性与中长时多步预测稳定性方面均优于其他基准方法。  相似文献   

15.
将车辆间时空交互信息融入卷积社会池化网络中,提出了一种面向群体行驶场景的有人驾驶车辆轨迹预测模型;使用长短时记忆(LSTM)网络预测群体车辆速度,基于此预测值计算群体车辆间的速度差;构造LSTM编码器捕捉群体车辆行驶轨迹的时间序列特征,设计卷积社会池化网络提取群体车辆间的空间依赖关系,使用LSTM解码器预测未来车辆各种动作的出现概率和相应轨迹,将具有最高出现概率的动作及其轨迹作为最终轨迹预测结果;使用真实轨迹数据集对所构建模型进行了参数标定和性能验证,测试了不同轨迹编解码与速度预测方法对模型性能的影响,确定了最优模型结构。计算结果表明:相较于历史速度,使用预测速度计算速度差作为模型输入可将均方根误差(RMSE)降低19.45%;相较于门控循环神经网络,使用LSTM进行速度预测可将RMSE降低4.91%;相较于原始卷积社会池化网络,所提出模型的轨迹预测误差在RMSE与负似然对数2个指标上分别降低了20.32%和21.04%,明显优于其他卷积社会池化网络变体;所提出模型与原始卷积社会池化网络计算耗时差距约3 ms,能够满足实时应用要求。  相似文献   

16.
停车App在交通出行中的广泛应用,使实时获取各类停车场信息更加便捷.然而,实时停车场信息在优化交通系统方面的作用机理尚无理论基础,其应用效果也缺乏量化分析. 本文将实时剩余停车位信息和停车诱导信息作为研究对象,基于点队列模型、学习理论和Logit选择模型,建立了实时停车场信息提供下的出行方式选择行为的仿真模型.然后,设计3种出行情景并结合仿真实验结果,对实时停车场信息提供影响出行者出行行为的机理进行分析,从而评估其对交通系统的优化效果.最后,基于对2类主要参数(学习因子和扩容因子)的敏感性分析,进一步讨论了提升实时停车场信息提供对交通系统优化作用的可行方式.  相似文献   

17.
研究航路交通拥挤状态动态实时预测问题,可为缓解航路交通拥挤,优化拥挤管控 策略提供科学的依据.首先,采用神经网络理论建立考虑航段相关性的交通流参数预测模型, 预测航段流量和航段密度参数;然后,运用多模型融合预测算法提高预测精度,基于模糊C均 值聚类算法和航段历史及预测交通流参数预测航段交通拥挤态势;最后,采用雷达实测航迹 数据验证模型的有效性.研究结果表明,本文建立的预测模型同时考虑了时间和空间因素,对 航路拥挤状态预测准确率达到82.29%,预测方法符合实际且对航路交通态势的预测具有应用 价值;同时考虑航段相关性影响和采用多模型融合预测算法能够明显提高预测精度.  相似文献   

18.
为加强对重点营运车辆异常驾驶行为的监督与检测,本文基于时间序列符号化算法(TSA) 与多尺度卷积神经网络模型(MCNN)提出一种组合模型TSA-MCNN,用于识别重点营运车辆异常驾驶行为。首先,对北斗数据进行预处理,并基于营运车辆存在多种车型、多种速度限制、多种异常驾驶行为的特点划分4种异常驾驶行为,构建异常样本数据集。其次,构建TSA-MCNN模型识别样本数据集,其过程分为两阶段,第1阶段,针对重点营运车辆的特点,引入能够粗粒化处理数据特征的时间序列符号化算法与能够多通道参数输入的多尺度卷积神经网络进行组合,并基于Keras库完成TSA-MCNN模型的搭建;第2阶段,利用样本数据集作为模型的输入变量,完成模型的训练、测试与识别。最后,以广河高速重点营运车辆北斗数据验证TSA-MCNN模型的性能, 同时,与异常识别传统算法的卷积神经网络(CNN)模型与动态时间扭曲-K最近邻(DTW-KNN)模型进行对比分析。验证结果表明:TSA-MCNN模型整体识别准确率为97.25%,相对于CNN模型与DTW-KNN模型提高了20.50%与5.63%。其中,TSA-MCNN模型对于正常驾驶行为、超速驾驶行为、紧急停车行为、临时停车行为、低速驾驶行为的识别精确率相对于CNN模型(DTW-KNN模 型)分别提高了26%(13%)、26%(6%)、23%(5%)、28%(3%)、0(0),说明该模型对于重点营运车辆异常驾驶行为的识别具有良好的性能。  相似文献   

19.
针对传统交通系统中短期客流预测精度低的问题,考虑城市交通站点客流数据在横纵向时间序列的规律性,基于卡尔曼滤波算法和K近邻(K-Nearest Neighbor, ANN)算法,分别根据当日数据和历史数据对客流量进行预测,然后利用权重系数方程对两个预测值加以融合,从而构建基于融合模型动态权值的短期客流预测方法。以某城市的某公交站点客流数据为研究对象,对所建融合模型短期客流预测的准确性和适用性加以验证。结果表明,新建模型、单一的卡尔曼滤波模型和KNN模型的平均相对误差分别为3.6%, 9.0%和7.7%,可见新建模型能更好地拟合客流变化趋势且评价效率更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号