首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
为实现牵引电机定子绕组匝间短路故障诊断,提出一种基于一维卷积神经网络(one-dimensional convolutional neural network, 1D-CNN)的故障诊断方法。首先对电机健康状态、不同相发生匝间短路故障及不同故障严重程度下的定子电流进行三层小波分解,得到小波分解高频系数和低频系数;求取小波分解系数的二范数,作为电机电流的特征;设计并训练1D-CNN,将训练好的1D-CNN作为分类器,实现牵引电机定子绕组匝间短路故障“端到端”的智能诊断。设计并搭建异步电机定子绕组匝间短路故障诊断实验平台。实验结果表明:所提方法可以准确有效诊断出轻微的匝间短路故障。在闭环控制下,电机发生1匝短路故障时,诊断正确率达到90.5%,并能够有效区分故障相。  相似文献   

2.
为了实现对牵引电机定子绕组匝间短路早期故障的可靠诊断,文章提出了一种基于阶跃激励稳态响应电流的故障诊断方法。首先根据牵引电机三相定子绕组匝间短路模型,对定子绕组任意两相施加阶跃激励,推导出3种情况下的响应电流表达式,并依据响应电流稳态值的变化特征提出新的故障特征分量;然后,搭建故障电机仿真模型,分析短路电阻和短路故障严重程度对响应电流的影响,研究故障特征分量对早期匝间短路故障诊断的有效性与可靠性;最后搭建试验平台,分析当电机固有不对称时,匝间短路故障对故障特征分量的影响。仿真与试验结果表明,该故障特征分量可以表示早期的匝间短路故障及其严重程度,并且能滤除电机固有不对称的影响。基于阶跃激励稳态响应电流的诊断方法操作便捷,结果可靠性高,对保护牵引系统的安全具有极大意义,且具备极大的工程应用价值。  相似文献   

3.
27.5 kV干式所用变压器在谐波电压作用下会发生匝间短路或层间短路故障,通过试验验证了匝间短路在短路绕组内产生较大幅度的匝间环流,反映到变压器整体绕组的电流则很小,高压熔断器对这种持续低电流故障不能起到有效的保护作用。因为匝间短路故障的发展伴随着高压绕组温度的显著提高,提出了所用变压器温度保护和熔断器保护相结合的保护方案,通过隔离负荷开关对变压器构成完善的保护。  相似文献   

4.
针对电机匝间短路故障诊断高频浪涌波形测试法存在过度灵敏且测试设备不便携的缺点,提出引入MCA技术,将电机看作包含电感和电阻的复杂等效电路,通过便携的ALL-TESTⅣPro电机故障检测仪对电机施加高频正弦波,得到阻抗、倍频值和相位角3个核心参数,从而实现电机绕组匝间短路与鼠笼转子导条断裂等故障的快速诊断和定位。试验证明,该方法可提高电机故障诊断的准确率。  相似文献   

5.
定子绕组匝间短路是影响永磁牵引电机安全稳定运行的主要故障之一,受运行工况、供电与电机本体不平衡的影响,现有方法难以实现永磁牵引电机匝间短路在线精准评估,这成为永磁电机推广应用迫切需要解决的关键技术难题。因此,文章提出一种基于多特征融合的深度高斯过程永磁牵引电机匝间短路分级评估方法:首先通过建立永磁牵引电机匝间短路故障模型,提取电流不平衡、电流三次谐波与dq电流的二次谐波特征;然后采用一种双随机变分推断深度高斯过程(Doubly Stochastic Deep Gaussian Processes,DSDGP)方法对提取特征进行融合训练建模,实现永磁牵引电机匝间短路劣化状态在线分级评估;最后通过永磁电机匝间短路试验与现场案例进行算法验证。结果表明,文章所提方法在多特征融合条件下的评估准确率达到95%以上,相较于支持向量机(support vector machine, SVM)和反向传播神经网络(back-propagation neural, BPN)等分类方法,具有准确率高,适用于变工况、小样本的工程实际应用环境等优点,解决了永磁牵引电机匝间短路早期故障检测及故障严重程度评估的行业难...  相似文献   

6.
异步电机定子绕组匝间短路故障建模与分析   总被引:1,自引:0,他引:1  
在充分考虑短路绕组间磁路耦合的基础上,建立了异步电机定子绕组匝间短路故障在三相静止坐标系下的数学模型,并通过坐标变换得到其在两相静止坐标系下的简化故障模型,对该模型进行仿真研究,采用扩展Park矢量法分析电机定子电流故障频谱。仿真结果验证了模型的正确性和有效性。  相似文献   

7.
ZD102A型牵引电机电枢绕组结构的改进   总被引:1,自引:0,他引:1  
针对ZD102,ZD102A型两种牵引电机发生的电枢接地,绕组匝间短路等故障,提出了改进电枢绕组结构的方案,并对改进前后电枢的结构特点,工艺特点,牵引电机的电枢反应进行了分析比较。  相似文献   

8.
应用油中溶解气体分析技术对一台SS7D型电力机车变压器油进行分析,判断设备内部存在电弧放电现象,并涉及固体绝缘。经检查发现,机车牵引绕组匝间存在短路故障。  相似文献   

9.
东风型内燃机车的ZQDR—204型牵引电动机通过科研、制造和运用部门十几年的努力,使得运用初期的一些惯性故障,如主极绕组、换向极绕组的接地断线和换向器升高片开焊甩锡等基本上得到了控制。但是,电枢故障,如电枢接地、匝间短路和后支架断裂等,不但没有减少,而且逐年增多。由于牵引电动机电枢故障如匝间短路等会使机车产生机破事故,致使机车不能正常运行,经济损失大,修  相似文献   

10.
以单相双绕组变压器数学模型为基础,用3个独立的单相变压器表征三相变压器的每一相,推导出了三相之间的连接关系方程;建立一种以磁链作为状态变量的三相变压器内部故障暂态仿真模型;充分考虑了二次侧终端条件、铁心磁路饱和等因素,选择磁链作为状态变量.在该模型基础上,对三相变压器的励磁涌流,短路试验电流、绕组匝地匝间短路故障时一次侧电流进行仿真计算及特性分析,验证了模型的正确性和有效性.  相似文献   

11.
提出了一种永磁同步电机电磁场与磁路相结合的计算方法,利用电磁场有限元分析法计算一定负载下交轴和直轴的电枢反应电抗及负载励磁电动势,利用磁路法中计算公式对该负载下定子绕组的漏抗和电阻进行计算,根据同步电机的矢量图计算出该负载下电机参数。样机试验结果证明该计算方法的正确性。  相似文献   

12.
结合TA0649D机车牵引电机的结构参数,首先建立了该直流电机的数学模型,设计了该电机的转速,电流双闭环系统。在此基础上,通过故障(如绕组匝间短路与对地短路)模拟,利用递棼最小二乘法计算故障发生后电机绕组电阻的变化。仿真计算结果表明,所设计的参数识别法一递推最小二乘法是有效的,具有实际应用价值。  相似文献   

13.
短路故障是牵引供电系统最易遭受的故障之一,短路电流冲击极易导致牵引变压器绕组变形。频率响应分析法是目前诊断变压器绕组变形非常有效的方法之一,基于牵引变压器建立精准频率响应模型对绕组的故障诊断具有重大的参考意义。为此以一台QYS-R-(31500+25000)/220牵引变压器为研究对象,提出一种基于集总参数电路的考虑绕组间全电容参数的改进型频率响应模型,结合数值公式法和有限元法,计算得到模型相关参数,最后通过状态空间方程,仿真得到变压器频响曲线。通过与实测曲线的对比,验证了考虑绕组间全电容参数的改进型频率响应模型较传统模型准确度更高。  相似文献   

14.
基于搭建的自耦变压器分裂式绕组故障模拟试验平台,在各独立绕组上模拟短路和轴向移位2种典型故障,测试无故障、典型故障下分裂式绕组的整体频率响应和各独立绕组的频率响应;计算特征频带内故障时相对于无故障时频率响应频率和幅值的偏移量,并模拟分析绕组故障下电气参数,探究频率响应特征及其变化机理.结果 表明:在0~100 kHz低...  相似文献   

15.
变频调速系统引起了牵引电机定子绕组匝间电压分布不均。针对变频牵引电机的绝缘结构,采用有限元方法,仿真了定子绕组的电场分布特性。仿真结果表明,定子绕组首匝承受的电场强度最大,且匝间绝缘含有气隙或金属时,会不同程度地增大场强,降低绝缘介质的起始放电电压。该结果为变频牵引电机定子绕组的绝缘设汁提供了理论依据。  相似文献   

16.
变压器线圈制造过程中经常出现换位(组合)导线有股间短路现象,如何查找短路点并且有效地排除故障显得很重要。本文介绍目前常用的几种短路点的查找和排除方法。  相似文献   

17.
文章基于边单元法,对某电力机车主变压器在脉冲短路电流条件下的三维漏磁场进行了分析,并获得脉冲短路电流条件下各绕组径向和轴向磁感应强度的分布情况;在此基础上,根据毕奥-沙瓦定律的微、积分表达式,提出了一种基于有限元的简单有效的绕组电磁力计算方法,且可以计算出各分段绕组的受力情况。  相似文献   

18.
并联电容补偿装置的电抗器发生匝间短路时,其电感值的变化将导致感抗比(电抗器的感抗与电容器容抗的比值)变化,利用该电气量的变化,提出并补装置基于感抗比的新匝间短路保护。基于PSCAD的仿真表明利用感抗比的匝间短路保护能够对匝间短路故障作出快速正确的判断,具有较高的灵敏度。  相似文献   

19.
介绍电磁阀故障切断报警系统的原理和结构,重点描述了电磁阀短路保护装置、CAN通讯管理机构和上位监测机,同时介绍了该系统在本森维尔车站的使用原理和效果.  相似文献   

20.
三绕组单相变压器常用作AT供电系统中的牵引变压器,研究其绕组变形的检测方法具有重要的意义.本文通过理论分析,证明可以利用短路电抗实现对变压器绕组变形的在线监测.根据三绕组单相变压器的特点,提出了在线测量短路电抗的方法.大量的仿真计算表明,该方法切实可行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号