首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
车辆-轨道垂向耦合振动是车辆-轨道耦合动力学主要研究课题.建立了车辆-轨道垂向耦合Timoshenko梁高频振动模型,运用快速积分方法编制仿真程序,对扁疤激励情况下的轮轨垂向高频振动进行系统仿真与分析,并与Euler梁模型仿真结果进行比较.结果表明,车辆速度与车轮扁疤的长度对轮轨系统振动有很大的影响;在高频情况下,进行振动与噪声的研究时,建议使用Timoshenko梁模型.  相似文献   

2.
基于Timoshenko梁模型的车辆-轨道耦合振动分析   总被引:6,自引:1,他引:6  
运用车辆-轨道耦合动力学理论,建立了基于Timoshenko梁钢轨模型的车辆-轨道耦合振动模型,分析了钢轨的固有振动特性,初步探讨了车辆-轨道系统的动力响应,结果表明,Timoshenko梁钢模型在固有振动及强迫振动两方面均与Euler梁钢轨模型有明显不同,前者能更详细地描述钢轨的高频特性。  相似文献   

3.
建立了车辆-轨道-路基耦合系统振动分析模型,考虑轨道不平顺激励及轮轨接触区滤波,模拟了轮轨间随机振动垂向作用力。建立了车轮三维实体有限元模型,考虑了名义接触点、轮缘和车轮外侧3个轮轨接触位置,模拟了车轮系统在随机振动垂向荷栽作用下的高频振动特性。分析结果表明:当列车以200km·h^-1行驶在有砟轨道上时,轮缘的振动加...  相似文献   

4.
为了研究高速列车车轮扁疤引起的动力学问题,根据多体动力学理论和等效轨道激扰法,建立了我国某型高速车辆的动力学模型及车轮新、旧两种扁疤模型.应用车轮轮径变化扁疤模拟法对车轮扁疤进行模拟,并对高速车辆轮轨冲击动力效应进行仿真分析.结果表明:新、旧扁疤轮轨冲击力规律不同,旧扁疤产生轮轨垂向冲击力随车速的增大而增大,在高速运行条件下,远大于新扁疤产生的垂向冲击力;当车速分别高于200和250 km/h时,车轮扁疤长度需要限制在35和30 mm以内.   相似文献   

5.
利用多体系统运动学理论以及多体动力学软件 SIMPACK精确的建立国内某主型动车与轨道系统的耦合动力学模型,通过在 SIMPACK软件中仿真车辆在不同速度下的运动状态,对该型车的垂动加速度,横向振动加速度、轮轨垂向力、轮轨横向力、车体垂向位移、车体横向位移等数据进行分析,得到振动响应随速度的变化。进一步分析根轨迹值得出自然阻尼与振动频率的分布曲线图,判断车辆振动与速度的关系以及在该速度下车辆是否失稳,为轨道、车辆结构设计提供一定的参考。  相似文献   

6.
一系垂向悬挂对重载货车轮轨动力作用的影响   总被引:1,自引:0,他引:1  
为了实现机车车辆低动力作用,基于车辆/轨道耦合动力学原理,应用车辆与线路最佳匹配设计方法和车辆/轨道空间耦合动力学模型,仿真分析了重载货车一系垂向悬挂对轮轨动力作用的影响,优化了一系悬挂参数,降低了重载货车轮轨动力的相互作用.研究结果表明:一系垂向刚度对车辆轮轨动力作用影响甚微,一系垂向阻尼在高量值范围增加阻尼值,减轻轨道结构的振动,加剧车辆本身振动;重载货车一系垂向阻尼取50~500 kN.s/m为宜.  相似文献   

7.
板式轨道动力响应分析方法   总被引:1,自引:0,他引:1  
为了计算在高速车辆移动荷载作用下板式轨道的动力响应,将轨道板视为线性粘弹性连续支承梁,将钢轨视为线性粘弹性点支承梁,将钢轨和轨道板统一划分为有限单元,基于车辆-轨道耦合动力学理论,利用弹性系统动力学总势能不变值原理,建立了高速列车-板式轨道的垂向耦合动力学方程,计算了车辆通过板式轨道钢轨焊接区短波不平顺时的轮轨动力学响应。仿真结果表明:与其他成熟仿真方法相比较,响应变化趋势与幅值基本一致,表明该方法可行。  相似文献   

8.
路基上CRTSⅡ型板式轨道裂纹影响分析   总被引:3,自引:0,他引:3  
为分析路基上CRTSⅡ型板式无砟轨道轨道板开裂对车辆和无砟轨道结构的影响,根据弹性地基梁理论、有限元方法和轮轨系统耦合动力学理论,建立了弹性地基梁体的有限元模型和车辆-轨道-路基垂向耦合振动模型.采用大型有限元软件ANSYS/LS-DYNA,分析了轨道板开裂对轨道结构的静、动力学性能和行车性能的影响.分析结果表明:轨道板开裂对轨道结构受力的影响较小,不影响行车的平稳性和安全性;随列车速度增大和轨道板开裂,均会增大轮轨作用力和轨道结构的动力响应;在裂缝地段,应采取减振、隔振、控制轨道几何不平顺等措施降低轨道结构的动力响应;轨道板开裂将影响无砟轨道的耐久性和使用寿命,应及时修补.   相似文献   

9.
运用经过大量线路实车运行试验验证的车辆-轨道耦合动力学仿真软件TTISIM,对传统车辆动力学和车辆-轨道耦合动力学两种类型模型的横向动力性能进行了比较与分析。结果表明:车辆无论是在直线上运行 是通过曲线轨道和道岔时,采用传统模型计算所得的轮轨横向相互动作用力均较采用耦合模型计算的大;仿真计算车辆蛇行失稳临界速度时,采用前一模型俐到的结果较后者偏高;而两者计算所得的车辆垂向与横向振动差别甚小。  相似文献   

10.
为了给涵洞地段道砟垫的设计和优化提供理论依据,根据轮轨系统耦合动力学理论和有限元方法,建立了车辆-轨道-涵洞垂向耦合振动模型;采用大型通用显式动力分析程序LS-DYNA分析道砟垫对轨道和涵洞动力响应时频特性的影响,并对道砟垫的合理刚度进行了研究.结果表明:采用道砟垫不会加剧轮轨动力作用和影响行车安全,而且可显著减小涵洞的动力响应;道砟垫对钢轨振动的影响不大,对轨枕振动有一定减振作用,但对道砟振动有不利影响;道砟垫的合理面刚度为50~100 MPa/m.  相似文献   

11.
轨道不平顺激励下直线电机车辆/轨道动力响应   总被引:2,自引:0,他引:2  
为了提高直线电机轮轨交通车辆运行的安全性与乘坐舒适性,分析了车轨结构特征,建立了直线电机车辆/板式轨道横、垂向动力学模型。通过三角级数法得到轨道随机不平顺的时间序列,以其作为系统激励,分析了直线电机车辆与轨道的随机振动特性。把轨道不平顺描述为余弦函数,研究了高低不平顺与方向不平顺的波长和幅值对系统动力响应的影响规律。计算结果表明:磁轨气隙变化的频率主要集中在1.2~2.0Hz范围内,波长小于10m的高低和方向不平顺对系统轮轨作用力、脱轨系数及轮重减载率等影响显著增大,应予以重点控制。  相似文献   

12.
根据弹性系统动力学总势能不变值原理及形成矩阵的"对号入座"法则,考虑了连续梁钢管混凝土拱桥桥面因温度和徐变作用而产生的变形影响,将其以组合曲线的形式叠加到轨道不平顺中进行列车走行性分析,建立车桥系统振动方程。采用计算机模拟的方法,建立列车和桥梁动力分析的有限元模型,研究了桥面徐变变形及温度变形对车桥系统耦合振动的影响。结果表明:桥面的徐变及温度变形所致的线路不平顺对轮重减载率、车体竖向加速度和竖向Sperling指标的影响较为显著。因此,在评判桥上列车的运行安全和舒适性时,尤其对于高速铁路,应考虑混凝土徐变及温变产生的桥面变形引起的轨道不平顺影响。  相似文献   

13.
考虑到多刚体系统动力学研究方法在建模及计算方面的局限性,将有限元法引入到机车车辆/轨道大系统的垂向耦合振动研究中来.为了真实模拟在轨道上不同位置的轮轨接触关系,用有限元参数二次规划法求出了轮轨等效接触刚度曲线,建立了统一的机车车辆/轨道耦合系统.通过建立系统的有限元分析模型,利用精细时程积分算法求解系统振动方程,分析研究了机车车辆在无限长轨道上运行时,在轨道不平顺激扰下,轮/轨间相互作用力、机车车辆/轨道系统中各部件的振动加速度及位移变化规律.研究结果表明,该方法不但可行,而且具有其它传统方法无可比拟的优越性.  相似文献   

14.
车辆——轨道耦合系统随机振动响应特性分析   总被引:5,自引:2,他引:3  
基于车辆一轨道耦合动力学理论,通过建立车辆一轨道垂横耦合模型,利用时域数值积分法进行了耦合系统的随机响应分析。在此基础上,采用周期图法估计出车辆一轨道垂向和横向随机响应功率谱密度PSD,并进行了谱分析。最终得到了车辆一轨道耦合系统随机振动的基本规律。  相似文献   

15.
为了研究高速列车车轮踏面不圆度的安全限值,基于车辆轨道垂横向耦合动力学理论,采用车辆动力学仿真分析软件ADAMS/Rail,建立了考虑车轮非圆化状态下的整车车辆/轨道空间耦合动力学模型。分析计算高速运行状态下常见车轮踏面不圆顺问题所导致的车辆轨道系统轮轨冲击振动特征,及其随列车运行速度的变化规律,给出了车速200~350 km/h 时轮轨作用力响应峰值与车轮不圆度之间的关系,确定了高速行车条件下车轮不圆度的临界范围。该研究可为基于轮轨作用力监测的车轮不圆顺状态识别提供理论指导。  相似文献   

16.
高速列车的振动特性直接影响旅客乘坐的舒适性和列车运行的安全性.为了分析不同线路条件和运行速度对高速列车振动特性的影响,建立了车辆-轨道耦合系统模型,并以德国高速轨道谱和我国干线轨道谱产生的轨道随机不平顺作为耦合系统的激励,通过Newmark数值积分和Matlab仿真,计算了高速车辆在高速线路和提速干线条件下车体、构架、轮对等车辆各部件和轨道部件的振动响应.研究结果表明,随着列车运行速度的提高,高速车辆各部件振动响应均显著增大;线路条件对高速列车轮对及轨道系统振动的影响较对车体系统振动的影响明显.  相似文献   

17.
车辆——轨道耦合系统随机振动分析   总被引:1,自引:0,他引:1  
将轨道高低不平顺视为平稳各态历经随机过程,利用车辆-轨道耦合动力有限元计算模型,对车辆-轨道系统垂向随机动做了计算,在时域和频域内对系统响应作了分析。  相似文献   

18.
基于车辆系统动力学理论建立包括柔性齿轮箱体与柔性轮对在内的刚柔耦合动力学模型,应用直接转矩控制理论建立了牵引电机控制模型,利用Simpack与Simulink联合仿真平台建立了机电耦合模型;考虑轮轨激励、车辆结构振动与谐波转矩等因素耦合作用,通过机电联合仿真对牵引传动部件振动特性进行了频谱分析,对牵引电机悬挂节点径向刚度、轴向刚度及阻尼在不同量级区间内的取值进行了研究。分析结果表明:在牵引电机谐波转矩和车轮多边形作用下,高速列车牵引传动部件出现较为明显的高频振动,牵引电机悬挂节点径向刚度为20~30 MN·m-1时,牵引电机垂向振动达到极小值,齿轮箱体与牵引电机在6倍基波频率及车轮转频处振动加速度较小,且径向刚度较小时车辆安全性指标较优;牵引电机悬挂节点轴向刚度为4~6 MN·m-1时,齿轮箱体与牵引电机受电机谐波转矩及车轮多边形高频激励的影响较小;牵引电机悬挂节点阻尼为0.1~40.0 kN·s·m-1时,转向架部件振动有效值较小,阻尼的变化对车辆动力学指标的影响甚微,且车辆安全性及平稳性指标较优。  相似文献   

19.
用有限元方法研究车辆垂向振动仿真问题,提出了切合实际的计算模型,采用轨道不平顺的数值模拟作为车辆的外部激励源,并详细地分析了敞车车体自振频率和轨道不平顺对车辆振动响应及车体结构内力变化情况.  相似文献   

20.
采用35自由度的多刚体车辆系统与三层弹性离散点支撑轨道模型,建立了基于Timosh-enko梁模型的车辆/轨道耦合动力学模型,应用新型显式积分法求解其运动特性。考虑钢轨横向、垂向和扭转运动对轮轨滚动接触几何关系的影响,分别由Hertz法向接触理论和沈氏蠕滑理论计算了轮轨法向力和轮轨滚动接触蠕滑力。假设轨枕垂向支撑高度沿纵向非均匀分布来模拟轨枕支撑硬点,基于移动轨下支撑模型,分析了不同轨枕支撑硬点个数和高度对系统动力响应的影响。分析结果表明,轨枕支撑硬点对轨枕的动力响应影响显著。当硬点高度为1.0 mm时,最大钢轨/轨枕作用力约为正常状态下的2倍,最大钢轨/轨枕拉力约为正常状态的10倍,这将加速轨枕、轨下垫层及钢轨扣件状况的恶化。而支撑硬点个数对系统动力响应的影响很小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号