首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traffic congestion and energy issues have set a high bar for current ground transportation systems. With advances in vehicular communication technologies, collaborations of connected vehicles have becoming a fundamental block to build automated highway transportation systems of high efficiency. This paper presents a distributed optimal control scheme that takes into account macroscopic traffic management and microscopic vehicle dynamics to achieve efficiently cooperative highway driving. Critical traffic information beyond the scope of human perception is obtained from connected vehicles downstream to establish necessary traffic management mitigating congestion. With backpropagating traffic management advice, a connected vehicle having an adjustment intention exchanges control-oriented information with immediately connected neighbors to establish potential cooperation consensus, and to generate cooperative control actions. To achieve this goal, a distributed model predictive control (DMPC) scheme is developed accounting for driving safety and efficiency. By coupling the states of collaborators in the optimization index, connected vehicles achieve fundamental highway maneuvers cooperatively and optimally. The performance of the distributed control scheme and the energy-saving potential of conducting such cooperation are tested in a mixed highway traffic environment by the means of microscopic simulations.  相似文献   

2.
This work examines the impact of heavy vehicle movements on measured traffic characteristics in detail. Although the number of heavy vehicles within the traffic stream is only a small percentage, their impact is prominent. Heavy vehicles impose physical and psychological effects on surrounding traffic flow because of their length and size (physical) and acceleration/deceleration (operational) characteristics. The objective of this work is to investigate the differences in traffic characteristics in the vicinity of heavy vehicles and passenger cars. The analysis focuses on heavy traffic conditions (level of service E) using a trajectory data of highway I‐80 in California. The results show that larger front and rear space gaps exist for heavy vehicles compared with passenger cars. This may be because of the limitations in manoeuvrability of heavy vehicles and the safety concerns of the rear vehicle drivers, respectively. In addition, heavy vehicle drivers mainly keep a constant speed and do not change their speed frequently. This work also examines the impact of heavy vehicles on their surrounding traffic in terms of average travel time and number of lane changing manoeuvres using Advanced Interactive Microscopic Simulator for Urban and Non‐Urban Networks (AIMSUN) microscopic traffic simulation package. According to the results, the average travel time increases when proportion of heavy vehicles rises in each lane. To reflect the impact of heavy vehicles on average travel time, a term related to heavy vehicle percentage is introduced into two different travel time equations, Bureau of Public Roads and Akçelik's travel time equations. The results show that using an exclusive term for heavy vehicles can better estimate the travel times for more than 10%. Finally, number of passenger car lane changing manoeuvres per lane will be more frequent when more heavy vehicles exist in that lane. The influence of heavy vehicles on the number of passenger car lane changing is intensified in higher traffic densities and higher percentage of heavy vehicles. Large numbers of lane changing manoeuvres can increase the number of traffic accidents and potentially reduce traffic safety. The results show an increase of 5% in the likelihood of accidents, when percentage of heavy vehicles increases to 30% of total traffic. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A model of highway traffic noise is formulated based on vehicle types. The data were collected from local highways in Thailand with free-flow traffic conditions. First, data on vehicle noise was collected from individual vehicles using sound level meters placed at a reference distance. Simultaneously, measurements were made of vehicles’ spot speeds. Secondly, are data for building the highway traffic noise model. This consists of traffic noise levels, traffic volumes by vehicle classification, average spot speeds by vehicle type, and the geometric dimension of highway sections. The free-flow traffic noise model is generated from this database. A reference energy mean emission level (the basic noise) level for each type of vehicles is developed based on direct measurement of Leq (10 s) from the real running condition of each type of vehicles. Modification of terms and parameters are used to make the model fit highway traffic characteristics and different types of vehicle.  相似文献   

4.
Traffic waves are phenomena that emerge when the vehicular density exceeds a critical threshold. Considering the presence of increasingly automated vehicles in the traffic stream, a number of research activities have focused on the influence of automated vehicles on the bulk traffic flow. In the present article, we demonstrate experimentally that intelligent control of an autonomous vehicle is able to dampen stop-and-go waves that can arise even in the absence of geometric or lane changing triggers. Precisely, our experiments on a circular track with more than 20 vehicles show that traffic waves emerge consistently, and that they can be dampened by controlling the velocity of a single vehicle in the flow. We compare metrics for velocity, braking events, and fuel economy across experiments. These experimental findings suggest a paradigm shift in traffic management: flow control will be possible via a few mobile actuators (less than 5%) long before a majority of vehicles have autonomous capabilities.  相似文献   

5.
According to the intra-vehicle interaction, a traffic flow can generally be divided into three homogeneous states (1) that of free driving, (2) that of bunched driving, and (3) that of standing. The parameter describing the state of free driving is the desired speed, for the state of bunching it is the intra-vehicle gaps (time headway) within the convoy and the mean speed of the convoy, and for the state of standing it is the maximum jam density. These are the most essential parameters which do not depend on the actual traffic situation.This paper introduces a new model which considers the Fundamental Diagram (equilibrium speed–flow–density relationship) as a function of the homogeneous states. All traffic situations in reality can be considered as combinations of the homogeneous states and therefore can be described by the essential parameters mentioned above. The non-congested (fluid) traffic is a combination (superposition) of the states of free driving and bunched driving, the congested (jam, stop, and go) traffic is a combination of the states of bunched driving (go) and standing (stop). The contribution of the traffic states within the differently congested traffic situations can then be easily obtained from the queuing and probability theory. As a result, Fundamental Diagram in all equilibrium traffic situations is derived as simple functions of the essential parameters.According to the new model the capacity of freeways and rural highways can be determined by measuring the essential parameters. This is much easier than measuring the capacity directly.Furthermore, the probabilities of the various traffic states can be obtained from the new model. This leads to new possibilities in real-time controlling and telematics.The new model is verified by comprehensive measurements carried out on freeways and rural highways in Germany.  相似文献   

6.
The introduction of connected and autonomous vehicles will bring changes to the highway driving environment. Connected vehicle technology provides real-time information about the surrounding traffic condition and the traffic management center’s decisions. Such information is expected to improve drivers’ efficiency, response, and comfort while enhancing safety and mobility. Connected vehicle technology can also further increase efficiency and reliability of autonomous vehicles, though these vehicles could be operated solely with their on-board sensors, without communication. While several studies have examined the possible effects of connected and autonomous vehicles on the driving environment, most of the modeling approaches in the literature do not distinguish between connectivity and automation, leaving many questions unanswered regarding the implications of different contemplated deployment scenarios. There is need for a comprehensive acceleration framework that distinguishes between these two technologies while modeling the new connected environment. This study presents a framework that utilizes different models with technology-appropriate assumptions to simulate different vehicle types with distinct communication capabilities. The stability analysis of the resulting traffic stream behavior using this framework is presented for different market penetration rates of connected and autonomous vehicles. The analysis reveals that connected and autonomous vehicles can improve string stability. Moreover, automation is found to be more effective in preventing shockwave formation and propagation under the model’s assumptions. In addition to stability, the effects of these technologies on throughput are explored, suggesting substantial potential throughput increases under certain penetration scenarios.  相似文献   

7.
This paper presents a thorough microscopic simulation investigation of a recently proposed methodology for highway traffic estimation with mixed traffic, i.e., traffic comprising both connected and conventional vehicles, which employs only speed measurements stemming from connected vehicles and a limited number (sufficient to guarantee observability) of flow measurements from spot sensors. The estimation scheme is tested using the commercial traffic simulator Aimsun under various penetration rates of connected vehicles, employing a traffic scenario that features congested as well as free-flow conditions. The case of mixed traffic comprising conventional and connected vehicles equipped with adaptive cruise control, which feature a systematically different car-following behavior than regular vehicles, is also considered. In both cases, it is demonstrated that the estimation results are satisfactory, even for low penetration rates.  相似文献   

8.
Well-defined relationships between flow and density averaged spatially across urban traffic networks, more commonly known as Macroscopic Fundamental Diagrams (MFDs), have been recently verified to exist in reality. Researchers have proposed using MFDs to monitor the status of urban traffic networks and to inform the design of network-wide traffic control strategies. However, it is also well known that empirical MFDs are not easy to estimate in practice due to difficulties in obtaining the requisite data needed to construct them. Recent works have devised ways to estimate a network’s MFD using limited trajectory data that can be obtained from GPS-equipped mobile probe vehicles. These methods assume that the market penetration level of mobile probe vehicles is uniform across the entire set of OD pairs in the network; however, in reality the probe vehicle market penetration rate varies regionally within a network. When this variation is combined with the imbalance of probe trip lengths and travel times, the compound effects will further complicate the estimation of the MFD.To overcome this deficit, we propose a method to estimate a network’s MFD using mobile probe data when the market penetration rates are not necessarily the same across an entire network. This method relies on the determination of appropriate average probe penetration rates, which are weighted harmonic means using individual probe vehicle travel times and distances as the weights. The accuracy of this method is tested using synthetic data generated in the INTEGRATION micro-simulation environment by comparing the estimated MFDs to the ground truth MFD obtained using a 100% market penetration of probe vehicles. The results show that the weighted harmonic mean probe penetration rates outperform simple (arithmetic) average probe penetration rates, as expected. This especially holds true as the imbalance of demand and penetration level increases. Furthermore, as the probe penetration rates are generally not known, an algorithm to estimate the probe penetration rates of regional OD pairs is proposed. This algorithm links count data from sporadic fixed detectors in the network to information from probe vehicles that pass the detectors. The simulation results indicate that the proposed algorithm is very effective. Since the data needed to apply this algorithm are readily available and easy to collect, the proposed algorithm is practically feasible and offers a better approach for the estimation of the MFD using mobile probe data, which are becoming increasingly available in urban environments.  相似文献   

9.
Autonomous vehicles have the potential to improve link and intersection traffic behavior. Computer reaction times may admit reduced following headways and increase capacity and backwards wave speed. The degree of these improvements will depend on the proportion of autonomous vehicles in the network. To model arbitrary shared road scenarios, we develop a multiclass cell transmission model that admits variations in capacity and backwards wave speed in response to class proportions within each cell. The multiclass cell transmission model is shown to be consistent with the hydrodynamic theory. This paper then develops a car following model incorporating driver reaction time to predict capacity and backwards wave speed for multiclass scenarios. For intersection modeling, we adapt the legacy early method for intelligent traffic management (Bento et al., 2013) to general simulation-based dynamic traffic assignment models. Empirical results on a city network show that intersection controls are a major bottleneck in the model, and that the legacy early method improves over traffic signals when the autonomous vehicle proportion is sufficiently high.  相似文献   

10.
We evaluate the implications of a range of driving patterns on the tank-to-wheel energy use of plug-in hybrid electric vehicles. The driving patterns, which reflect short distance, low speed, and congested city driving to long distance, high speed, and uncongested highway driving, are estimated using an approach that involves linked traffic assignment and vehicle motion models. We find substantial variation in tank-to-wheel energy use of plug-in hybrid electric vehicles across driving patterns. Tank-to-wheel petroleum energy use on a per kilometer basis is lowest for the city and highest for the highway driving, with the opposite holding for a conventional internal combustion engine vehicle.  相似文献   

11.
This paper addresses the problem of the hybrid control of autonomous vehicles driving on automated highways. Vehicles are autonomous, so they do not communicate with each other nor with the infrastructure. Two problems have to be dealt with: a vehicle driving in a single-lane highway must never collide with its leading vehicle; and a vehicle entering the highway at a designated entry junction must be able to merge from the merging lane to the main lane, again without any collision. To solve these problems, we equip each vehicle with a hybrid controller, consisting of several continuous control laws embedded inside a finite state automaton. The automaton specifies when a given vehicle must enter the highway, merge into the main lane, yield to other vehicles, exit from the highway, and so on. The continuous control laws specify what acceleration the vehicle must have in order to avoid collisions with nearby vehicles. By carefully designing these control laws and the conditions guarding the automaton transitions, we are able to demonstrate three important results. First, we state the initial conditions guaranteeing that a following vehicle never collides with its leading vehicle. Second, we extend this first result to a lane of autonomous vehicles. Third, we prove that if all the vehicles are equipped with our hybrid controller, then no collision can ever occur, and all vehicles either merge successfully or are forced to drop out when they reach the end of their merging lane. Finally, we show the outcome of a highway microsimulation modelled after the Katy Corridor near Houston, Texas: our single-lane highway can accommodate 4000 vehicles per hour with neither drop-outs nor traffic congestion. It is entirely programmed in SHIFT, a hybrid systems simulation language developed at UC Berkeley by the PATH group. This shows that SHIFT is a well suited language for designing safe control laws for autonomous highway systems, among others.  相似文献   

12.
This study quantifies the energy and environmental impact of a selection of traffic calming measures using a combination of second-by-second floating-car global positioning system data and microscopic energy and emission models. It finds that traffic calming may result in negative impacts on vehicle fuel consumption and emission rates if drivers exert aggressive acceleration levels to speed up to their journeys. Consequently by eliminating sharp acceleration maneuvers significant savings in vehicle fuel consumption and emission rates are achievable through driver education. The study also demonstrates that high emitting vehicles produce CO emissions that are up to 25 times higher than normal vehicle emission levels while low emitting vehicles produce emissions that are 15–35% of normal vehicles. The relative increases in vehicle fuel consumption and emission levels associated with the sample traffic calming measures are consistent and similar for normal, low, and high emitting vehicles.  相似文献   

13.
The number of vehicles on the road (worldwide) is constantly increasing, causing traffic jams and congestion especially in city traffic. Anticipatory vehicle routing techniques have thus far been applied to fairly small networked traffic scenarios and uniform traffic. We note here a number of limitations of these techniques and present a routing strategy on the assumption of a city map that has a large number of nodes and connectivity and where the vehicles possess highly varying speed capabilities. A scenario of operation with such characteristics has not previously been sufficiently studied in the literature. Frequent short‐term planning is preferred as compared with infrequent planning of the complete map. Experimental results show an efficiency boost when single‐lane overtaking is allowed, traffic signals are accounted for and every vehicle prefers to avoid high traffic density on a road by taking an alternative route. Comparisons with optimistic routing, pessimistic routing and time message channel routing are given. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a micro‐simulation modeling framework for evaluating pedestrian–vehicle conflicts in crowded crossing areas. The framework adopts a simulation approach that models vehicles and pedestrians at the microscopic level while satisfying two sets of constraints: (1) flow constraints and (2) non‐collision constraints. Pedestrians move across two‐directional cells as opposed to one‐dimensional lanes as in the case of vehicles; therefore, extra caution is considered when modeling the shared space between vehicles and pedestrians. The framework is used to assess large‐scale pedestrian–vehicle conflicts in a highly congested ring road in the City of Madinah that carries 20 000 vehicles/hour and crossed by 140 000 pedestrians/hour after a major congregational prayer. The quantitative and visual results of the simulation exhibits serious conflicts between pedestrians and vehicles, resulting in considerable delays for pedestrians crossing the road (9 minutes average delay) and slow traffic conditions (average speed <10 km/hour). The model is then used to evaluate the following three mitigating strategies: (1) pedestrian‐only phase; (2) grade separation; and (3) pedestrian mall. A matrix of operational measures of effectiveness for network‐wide performance (e.g., average travel time, average speed) and for pedestrian‐specific performance (e.g., mean speed, mean density, mean delay, mean moving time) is used to assess the effectiveness of the proposed strategies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Conceptually, a Green Light Optimal Speed Advisory (GLOSA) system suggests speeds to vehicles, allowing them to pass through an intersection during the green interval. In previous papers, a single speed is computed for each vehicle in a range between acceptable minimum and maximum values (for example between standstill and the speed limit). This speed is assumed to be constant until the beginning of the green interval, and sent as advice to the vehicle. The goal is to optimise for a particular objective, whether it be minimisation of emissions (for environmental reasons), fuel usage or delay. This paper generalises the advice given to a vehicle, by optimising for delay over the entire trajectory instead of suggesting an individual speed, regardless of initial conditions – time until green, distance to intersection and initial speed. This may require multiple acceleration manoeuvres, so the advice is sent as a suggested acceleration at each time step. Such advice also takes into account a suitable safety constraint, ensuring that vehicles are always able to stop before the intersection during a red interval, thus safeguarding against last-minute signal control schedule changes. While the algorithms developed primarily minimise delay, they also help to reduce fuel usage and emissions by conserving kinetic energy. Since vehicles travel in platoons, the effectiveness of a GLOSA system is heavily reliant on correctly identifying the leading vehicle that is the first to be given trajectory advice for each cycle. Vehicles naturally form a platoon behind this leading vehicle. A time loop technique is proposed which allows accurate identification of the leader even when there are complex interactions between preceding vehicles. The developed algorithms are ideal for connected autonomous vehicle environments, because computer control allows vehicles’ trajectories to be managed with greater accuracy and ease. However, the advice algorithms can also be used in conjunction with manual control provided Vehicle-to-Infrastructure (V2I) communication is available.  相似文献   

16.
Energy and emissions impacts of a freeway-based dynamic eco-driving system   总被引:1,自引:0,他引:1  
Surface transportation consumes a vast quantity of fuel and accounts for about a third of the US CO2 emissions. In addition to the use of more fuel-efficient vehicles and carbon-neutral alternative fuels, fuel consumption and CO2 emissions can be lowered through a variety of strategies that reduce congestion, smooth traffic flow, and reduce excessive vehicle speeds. Eco-driving is one such strategy. It typically consists of changing a person’s driving behavior by providing general static advice to the driver (e.g. do not accelerate too quickly, reduce speeds, etc.). In this study, we investigate the concept of dynamic eco-driving, where advice is given in real-time to drivers changing traffic conditions in the vehicle’s vicinity. This dynamic strategy takes advantage of real-time traffic sensing and telematics, allowing for a traffic management system to monitor traffic speed, density, and flow, and then communicates advice in real-time back to the vehicles. By providing dynamic advice to drivers, approximately 10–20% in fuel savings and lower CO2 emissions are possible without a significant increase in travel time. Based on simulations, it was found that in general, higher percentage reductions in fuel consumption and CO2 emission occur during severe compared to less congested scenarios. Real-world experiments have also been carried out, showing similar reductions but to a slightly smaller degree.  相似文献   

17.
There are two kinds of stability associated with traffic flow problems – string stability (or car-following stability) and traffic flow stability. We provide a clear distinction between traffic flow stability and string stability, and such a distinction has not been recognized in the literature, thus far. String stability is stability with respect to intervehicular spacing; intuitively, it ensures the knowledge of the position and velocity of every vehicle in the traffic, within reasonable bounds of error, from the knowledge of the position and velocity of a vehicle in the traffic. String stability is analyzed without adding vehicles to or removing vehicles from the traffic. On the other hand, traffic flow stability deals with the evolution of traffic velocity and density in response to the addition and/or removal of vehicles from the flow. Traffic flow stability can be guaranteed only if the velocity and density solutions of the coupled set of equations is stable, i.e., only if stability with respect to automatic vehicle following and stability with respect to density evolution is guaranteed. Therefore, the flow stability and critical capacity of any section of a highway is dependent not only on the vehicle following control laws and the information used in their synthesis, but also on the spacing policy employed by the control system. Such a dependence has practical consequences in the choice of a spacing policy for adaptive cruise control laws and on the stability of the traffic flow consisting of vehicles equipped with adaptive cruise control features on the existing and future highways. This critical dependence is the subject of investigation here.  相似文献   

18.
Reservation-based intersection control is a revolutionary idea for using connected autonomous vehicle technologies to improve intersection controls. Vehicles individually request permission to follow precise paths through the intersection at specific times from an intersection manager agent. Previous studies have shown that reservations can reduce delays beyond optimized signals in many demand scenarios. The purpose of this paper is to demonstrate that signals can outperform reservations through theoretical and realistic examples. We present two examples that exploit the reservation protocol to prioritize vehicles on local roads over vehicles on arterials, increasing the total vehicle delay. A third theoretical example demonstrates that reservations can encourage selfish route choice leading to arbitrarily large queues. Next, we present two realistic networks taken from metropolitan planning organization data in which reservations perform worse than signals. We conclude with significantly positive results from comparing reservations and signals on the downtown Austin grid network using dynamic traffic assignment. Overall, these results indicate that network-based analyses are needed to detect adverse route choices before traffic signals can be replaced with reservation controls. In asymmetric intersections (e.g. local road-arterial intersections), reservation controls can cause several potential issues. However, in networks with more symmetric intersections such as a downtown grid, reservations have great potential to improve traffic.  相似文献   

19.
An Intervention Analysis Model (IAM) (Box and Tiao, 1975) was developed to study the impact of the ‘intervention' brought in by the Government of India (GoI), to control the CO pollution caused by the vehicular exhaust emissions, by the enforcement of the emission standards for the vehicles, on the mean level of the time-series of CO concentration. The study was conducted for an Air Quality Control Region (AQCR) comprising of an urban road intersection in Delhi, India, where almost 100% CO is contributed by vehicular traffic. Application of the model suggests that the ‘intervention' has not been effective in bringing down the desired change; some likely causes of which have also been mentioned.  相似文献   

20.
Vehicular networks supporting cooperative driving on the road have attracted much attention due to the plethora of new possibilities they offer to modern Intelligent Transportation Systems. However, research works regarding vehicular networks usually obviate assessing their proposals in scenarios including adverse vehicle densities, i.e., density values that significantly differ from the average values, despite such densities can be quite common in real urban environments (e.g. traffic jams). In this paper, we study the effect of these hostile conditions on the performance of different schemes providing warning message dissemination. The goal of these schemes is to maximize message delivery effectiveness, something difficult to achieve in adverse density scenarios. In addition, we propose the Neighbor Store and Forward (NSF) scheme, designed to be used under low density conditions, and the Nearest Junction Located (NJL) scheme, specially developed for high density conditions. Simulation results demonstrate that our proposals are able to outperform existing warning message dissemination schemes in urban environments under adverse vehicle density conditions. In particular, NSF reduces the warning notification time in low vehicle density scenarios, while increasing up to 23.3% the percentage of informed vehicles. As for high vehicle density conditions, NJL is able to inform the same percentage of vehicles than other existing approaches, while reducing the number of messages up to 46.73%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号