首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
针对电子节气门的构造及其机械结构中存在的非线性问题,设计了基于PIC18F458的电子节气门控制系统。该系统利用PIC的A/D转换以及脉宽调制功能来控制节气门,实现了电子节气门的位置控制。试验结果表明,该电子节气门控制系统具有良好的跟随特性,提高了汽车的动力性、平稳性和经济性。  相似文献   

2.
基于位置反馈控制的电子节气门控制系统研究   总被引:1,自引:0,他引:1  
以Infineon XC167为主芯片控制电子节气门,设计了直流电机驱动电路,开发了电子节气门控制系统的硬件电路。设计了模糊智能PID控制器,提出了电子节气门的控制策略。通过电子节气门阶跃响应试验和油门位置与节气门位置试验,验证了该控制系统可以实现节气门位置反馈的闭环控制。  相似文献   

3.
电子节气门控制系统能精确控制节气门开度,不仅可提高燃油经济性,减少排放,而且系统响应迅速,可获得满意的操控性能;另一方面,可实现怠速控制、巡航控制和车辆稳定控制等的集成,简化了控制系统结构。文章对发动机节气门开度控制系统进行了设计,该系统主要由前端所需的传感器、ECU及驱动装置组成。该设计基于89C51单片机,并完成对发动机怠速,汽车正常行驶及巡航状态下的节气门开度控制系统的电路和程序设计。  相似文献   

4.
基于智能PID控制的电子节气门控制系统研究   总被引:1,自引:0,他引:1  
以Infineon XC164CM为主芯片,以TLE5206为电机控制芯片,构建了电子节气门的硬件电路.基于所制定的电子节气门控制策略设计了智能PID控制器,进行了电子节气门的阶跃响应试验和电子节气门的跟随响应试验.结果表明,电子节气门有很好的随动性和稳定性,跟随曲线光滑基本无超调,从而表明该控制系统可以实现对电子节气门位置的精确控制.  相似文献   

5.
增程式电动汽车的增程器控制系统需自动调节增程器的输出功率,满足整车的发电功率需求。基于该需求领域,研究了电子节气门控制系统方案,按照发动机的停机、起动、怠速、发电4种不同工况,设计了电子节气门的逻辑控制方案。通过试验验证表明,该控制方案可以按照不同发动机工况,实现增程器控制系统的控制功能。  相似文献   

6.
分析了电子节气门系统的研发现状,提出了基于模糊逻辑的电子节气门控制算法,设计了电子节气门的电路硬件部分,建立了电子节气门控制系统的仿真模型。采用dSPACE快速控制原型系统,分别完成了被控电子节气门离车和随车各工况下的试验。结果验证了控制算法及控制系统的有效性。  相似文献   

7.
混合动力汽车汽油机电子节气门模糊智能PID控制   总被引:1,自引:0,他引:1  
应用英飞凌新一代车用嵌入式控制芯片XC164,开发了基于模糊智能积分PID复合控制算法的混合动力汽车汽油机电子节气门控制系统,为混合动力汽车主控制器和发动机控制之间提供了控制接口。通过对混合动力轿车进行的实际行驶中频繁急加速、急减速过程中电子节气门目标开度和实际控制开度的对比试验,验证了电子节气门控制响应速度快、稳态误差小及控制系统软硬件设计满足混合动力总成对发动机控制的要求。  相似文献   

8.
为了提高汽车发动机电子节气门控制系统的动态响应特性,进一步探索改善发动机过渡工况排放性能的控制策略。首先根据电子节气门非线性机电系统建立了对应的数学模型,以便于对电子节气门控制系统进行研究。随后基于智能控制算法具有抗干扰能力强、鲁棒性强和适用于非线性控制系统等优点,而且免疫反馈控制算法也具有在控制系统中响应迅速的特点,将模糊控制算法和免疫反馈控制算法应用于电子节气门系统的运动控制,探讨电子节气门系统的非线性对控制效果的影响。基于经典控制算法PID对系统的控制精度和响应的调节、模糊控制算法对非线性系统的响应性的适应性以及免疫反馈算法对提高控制系统的响应速度有效性的品质,设计了用于提高电子节气门系统响应特性的模糊免疫PID控制器,进一步进行电子节气门响应特性研究。试验结果表明,与PID和模糊PID控制的系统响应特性比较,模糊免疫PID控制系统的响应速度和调整速度等动态特性指标具有明显优势,有利于电子节气门的响应特性的提高,对于提高汽车的动力性、经济性以及排放性都有重要的意义。  相似文献   

9.
建立电子节气门数学模型并进行非线性分析,找到了其难于控制的原因.设计了模糊智能PID复合控制系统,提出了控制策略,阐述了XC16X单片机在节气门控制中的应用.利用示波器对比了增加控制算法前、后电子节气门控制效果.结果表明,不加控制算法时节气门位置有明显的阶跃现象和超调现象,而增加模糊智能PID算法和控制策略以后,节气门...  相似文献   

10.
针对汽车发动机电控系统的重要组成部件——电子节气门的控制问题,提出了一种开环补偿与闭环控制相结合的电子节气门控制策略,并进行仿真分析.以16位单片机(MC9S12X128)为主控芯片,设计了电子节气门控制系统的软硬件,实现了基于扭矩控制的汽车电子节气门精确控制.通过试验验证了系统的基本功能,经进一步完善,此系统可满足实...  相似文献   

11.
混合动力轿车电子节气门控制系统设计与匹配试验   总被引:2,自引:0,他引:2  
基于智能积分模糊PID控制原理,采用英飞凌TLE4729G单片机开发了电子节气门控制系统的硬件和软件,并将其嵌入发动机ECU中.将所开发的电子节气门安装在混合动力车上,进行整车起动试验和工况循环试验.试验结果表明,混合动力车起动时间和喷油脉宽明显优于传统车,且电子节气门响应速度快,能满足混合动力车不同工况的需求.  相似文献   

12.
针对车用电子节气门的非线性特征,提出了带复位弹簧和摩擦补偿器的PID控制策略.先分析电子节气门的物理特性,根据此特性使用Simulink建立了物理模型和控制策略模型,并进行模型仿真和参数初步整定,然后使用Simulink的Embedded-Coder工具将控制策略模型自动生成C代码,集成到自主开发的ECU中,最后在硬件...  相似文献   

13.
张英杰  章兢  陈晓可  王镇道 《汽车工程》2006,28(2):143-147,128
介绍课题组研制的拥有自主知识产权的SF32601型电动轮自卸车电传动微机控制系统,设计了系统的软硬件结构,开发了基于高性能DSP芯片TMS320F2812与非线性PI控制策略的样机。样机测试结果表明本系统抗干扰能力强、控制精度好、集成度高、性能稳定。  相似文献   

14.
针对电子节气门的结构特点和工作原理,构建了电子节气门的关键部件如驱动电机、减速系统、复位弹簧等物理和数学模型,并以此为基础在Matlab/Simulink环境下建立了电子节气门的仿真控制系统,系统包括表示静态库仑摩擦及复位弹簧的非线性函数和动态的线性传递函数。采用积分分离PID的控制算法对仿真模型进行模拟开度输出,并将其应用于实际的电子节气门控制中。实测结果与模拟输出结果较为相符。  相似文献   

15.
无级变速汽车自动驾驶系统模糊控制策略   总被引:4,自引:0,他引:4  
为研究无级变速汽车自动驾驶系统的模糊控制策略,建立了简化的基于底盘测功机的无级变速汽车和自动驾驶系统模型。考虑到传动系统的高阶时变非线性特性、输入和输出之间的耦合效应以及汽车运行工况和复杂的外界环境因互的影响,提出了把参数自调整的模糊PI控制算法用于油门控制系统,混合型模糊PID控制算法用于发动机转速控制系统。仿真结构表明,文中给出的自动驾驶系统的模糊控制策略是可行和有效的,具有实用价值。  相似文献   

16.
天然气发动机电子节气门控制系统的研究   总被引:1,自引:0,他引:1  
介绍基于电控调压器的增压单燃料CNG发动机的系统组成,在分析电子节气门结构和驱动原理的基础上,开发了以MC68376为主芯片的电子节气门控制系统,采用TLE6209设计了电子节气门驱动电路。设计了基于模糊自整定参数PID控制器,通过电子节气门在CNG发动机试验台架上的阶跃响应试验和油门开度与节气门开度的跟踪响应试验,验证了所设计的节气门控制系统可以实现对电子节气门精确、快速和稳态误差小的闭环控制。  相似文献   

17.
为了进一步提高车辆跟车过程中的跟踪性、安全性、舒适性和燃油经济性,针对已有间距策略表现过于保守或反应过于激烈等不足之处,提出了一种预测恒定车头时距策略。该策略考虑了相对加速度,建立了一种预测型期望车间距模型,进而应用于模型预测控制的多目标自适应巡航控制系统中,能进一步提高模型预测控制对多个控制目标的综合协调能力。搭建上层控制器、下层PID控制器、油门制动切换、逆纵向动力学模型。在多工况下仿真,通过建立性能评判指标对多目标进行量化分析。结果表明,所提出的间距策略在保证安全性的前提下,提升了自适应巡航控制系统的综合性能。在不同驾驶风格的车头时距下,跟踪性、舒适性和燃油经济性均有良好表现。  相似文献   

18.
介绍了本系统中电子节气门的机构和驱动单元设计,尝试用类似经验算法的增量型PID控制算法对节气门直流电机进行控制。经过台架试验,节气门控制效果理想。  相似文献   

19.
模糊PID控制的电动汽车再生制动系统变换器的研究   总被引:1,自引:1,他引:0  
提出了利用超级电容作为储能元件实现电动汽车再生制动的能量回收方案,分析了电动汽车控制系统的双向DC/DC变换器和电机驱动器的驱动降压电路、制动升压电路,设计了该控制系统的模糊自整定PID控制器。通过仿真研究表明,在车辆驱动降压变换时,模糊自整定PID控制的超级电容器在150 A左右的大电流放电情况下,超级电容仍能维持2.5 s的指定电压输出,车辆在额定功率下工作,通过降压变换,超级电容储存的能量迅速供给电机,有效提高了驱动电流,改善了起动及加速性能,有效增加了续驶里程。在制动升压变换时,模糊自整定PID控制的超级电容器电流基本跟随指令值上下波动,超级电容电压从120 V不断上升,使得该电容器的储能能力得到充分利用,实现了高水平的能量回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号