首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对中速磁悬浮列车运行控制系统的高控制精度与高鲁棒性要求,提出一种基于分数阶PID的运行控制方法.首先,根据中速磁悬浮列车运行数据,利用粒子群优化-模拟退火算法辨识列车空气阻力系数,提高列车动力学模型精度.然后,设计分数阶PID速度控制器,跟踪列车目标速度曲线,降低各类运行阻力对列车运行过程的影响.最后,基于试验线数据...  相似文献   

2.
主要介绍了适用于中低速磁悬浮列车的信号系统的构成、工作原理和功能.该信号系统采用一体化的设计思想,集自动闭塞、计算机联锁控制和列车控制与防护功能于一身,暂不设置列车自动监控(ATS)和列车自动运行(ATO)子系统.列车自动临控(ATS)的基本功能由联锁工作机代替,列车驾驶采用人工驾驶模式.经过3年多的运用表明该系统的开...  相似文献   

3.
介绍了中低速磁悬浮列车控制及网络系统的设计思路与系统组成,从网络控制系统总线、拓扑、功能等角度对网络控制系统进行了阐述,通过车辆逻辑控制模块、列车线的分析,对中低速磁悬浮列车硬线继电控制系统进行了说明.  相似文献   

4.
城轨列车制动模型及参数辨识   总被引:2,自引:0,他引:2  
列车制动模型是设计ATO精确停车控制策略的依据.本文通过分析城轨列车制动系统的构成、特性及其和驾驶员的接口,从面向控制的角度提出适合控制器设计的制动模型以及模型参数的辨识方法.现场实验表明:该模型能够较好描述城轨列车制动系统的动态特性,并且基于该模型的自动停车控制系统在实验中也取得了满意的性能.  相似文献   

5.
ARCNET网络系统实时性能分析与研究   总被引:2,自引:0,他引:2  
列车控制网络在列车控制系统中起着非常重要的作用,其实时性能直接影响到列车的安全可靠运行。对其实时性能进行分析评价可以优化设计列车控制网络的应用层,合理配置网络,优化网络性能,从而保证列车的安全可靠运行。本文介绍ARCNET列车控制网络的数据帧类型,数据通信机制和自动重构过程等,并对ARCNET网络通信延迟时间参数进行分析,建立ARCNET网络数据通信延迟时间模型、分析其网络实时性,并提出改进网络实时性的方法。最后在搭建的网络控制系统中,对实验测试结果和模型计算结果进行比较,验证模型的正确性。并利用分析结果以及建立的通信延迟时间数学模型,计算开发基于ARCNET轻轨列车网络控制系统的轮询周期,为系统应用层设计提供依据。  相似文献   

6.
低速磁悬浮列车牵引计算算法研究   总被引:2,自引:2,他引:0  
为完成低速磁悬浮列车牵引计算,建立了低速磁悬浮列车牵引计算模型,提出了一种新的牵引策略,阐述了该策略的关键技术和算法流程的设计,编制了牵引计算仿真软件,并对北京S1线进行了牵引计算。采用该算法控制列车达到了列车运行速度快、节能降耗的目的。  相似文献   

7.
中低速磁悬浮列车制动过程中具有非线性强、时滞大、时滞特性难处理等特性,传统列车制动控制方法难以实现对磁浮列车制动过程的精准速度控制。为解决中低速磁悬浮列车制动过程的时滞问题,提高制动控制精度,提出一种中低速磁浮列车制动过程的时滞补偿预测控制方法。首先,根据中低速磁悬浮列车实际运行数据,利用带有遗忘因子的递推最小二乘法辨识列车模型参数,建立列车自回归模型。然后,根据得到的受控自回归积分滑动平均模型和Smith预估器构建带时滞补偿的广义预测控制器并分析其控制律更新过程,实现对中低速磁悬浮列车制动过程的纯滞后补偿,降低列车制动过程中时滞特性的影响。最后,基于某磁浮线现场数据,以中低速磁悬浮列车制动过程为被控对象进行实验仿真,并比较时滞补偿广义预测控制方法与传统广义预测控制方法对于中低速磁悬浮列车制动过程速度跟踪控制的效果。仿真结果表明:所设计的时滞补偿广义预测控制器能够以更高的精度实现对中低速磁悬浮列车制动过程的速度跟踪,且与传统广义预测控制方法相比,系统跟踪误差更小并具有更好的控制性能。所提出的时滞补偿广义预测控制算法不仅解决了中低速磁悬浮列车制动过程的时滞问题,而且有效提高了列车制动控制...  相似文献   

8.
日本轨道交通列车运行控制系统   总被引:1,自引:0,他引:1  
在研究日本轨道交通信号系统发展历史的基础上.剖析了日本典型的四类轨道交通运行控制系统总体特征;并从电子技术、计算机技术和通信技术方面分析了日本轨道交通列车控制系统的原理、功能、结构和技术特点.研究了轨道交通列车刹车系统能有效防止列车正面冲撞的原理;分析了轨道交通列车自动保护系统具有列车自动保护的诸多功能;论证了轨道交通列车分布式自动控制系统的功能结构与技术特点.  相似文献   

9.
什么是列车自动控制系统? 列车自动控制系统(英文名缩写ATC)是由信号系统和车辆制动系统组成,主要用于列车安全运行。早在60年代,日本铁路就开发列车自动控制系统,并用于新干线高速铁路和大城市之间的铁路网络,使之成为世界上最安全的铁路。随着科技进步,ATC技术也在不断地创新和发展。从90年代起,日本铁路就开始研究新一代的以数字传输为基础的车载智能列车自动控制系统。  相似文献   

10.
系统主要实现列车运行时刻信息的自动采集识及列车与地面调度所的远程通信.为了实现系统的可靠性设计,提出了基于双模冗余混联结构的系统可靠性模型,并采用低耦合和高聚合的层次结构模型,实现了通信软件的可靠性设计.运行实践证明,该系统稳定可靠,达到了设计要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号