首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
由德国Bosch等公司共同开发的,使用GPS传感器与气压传感器,能判断出行驶车辆所在位置高度的传感器“SMD500”,以保证车辆行驶在不同高度的道路、隧道及桥上时,能准确掌握车辆高度,提高导航仪的精确度。  相似文献   

2.
本文中提出了一种在车辆正常行驶时动态自动校正横摆角速度传感器零点偏移的方法,该方法利用卫星定位信息和车速识别行驶车辆的静止或直线行驶两种可校正行驶工况,并在该工况下利用横摆角速度传感器的测量值校正其零点偏移。采用坏点清空的单队列从卫星定位点中提取连续好点序列,针对该好点序列采用最小二乘直线拟合和标准差条形分布直行判据识别直线行驶工况。结果表明,本方法能在车辆行驶中正确地自动识别可校正工况,校正后的零点偏移精度满足汽车导航系统的应用要求。  相似文献   

3.
电子稳定程序(ESP)用于在高速转弯或在湿滑路面上行驶时提供最佳的车辆稳定性和方向控制。电子控制单元(ECU)通过方向盘转角传感器确定驾驶员想要的行驶方向;通过车轮速度传感器和横向偏摆率传感器来计算车辆的实际行驶方向。当电子稳定程序检测到车辆行驶轨迹与驾驶员要求不符时,电子稳定程序将首先利用牵引力控制系统中的发动机扭矩减小功能并向发动机控制模块(ECM)发送一个串行数据通信信号.请求减小发动机扭矩。如果电子稳定程序仍然检测到车轮侧向滑移。则电子稳定程序将实行主动制动干预。  相似文献   

4.
高速公路无人值守自动发卡系统存在缺陷,作弊车辆有机会盗取通行卡。文中分析了现有设计的不足,针对取卡车辆倒车装置重复取卡的作弊方式,设计了一种基于2个超声波测距传感器的车辆行驶方向检测装置。该装置通过单片机判断传感器信号变化的时序检测车辆的行驶方向;通过继电器与串口接入发卡系统,对原有系统改动极小。试验结果显示该装置可有效检测车辆行驶方向,阻止倒车作弊行为。  相似文献   

5.
ESP(动态偏航稳定控制系统)是车辆新型主动安全系统。是ABS(防抱死制动系统)、ASR(加速防滑系统)、EBD(电子制动力分配)、TCS(牵引力控制系统)、AYC(主动车身横摆控制系统)的结合。在ABS和ASR的基础上,增加了车辆转向行驶时横摆率传感器、侧加速度传感器和转向盘转角传感器,ECU通过庞大的监视网络监测车辆的状态和驾驶员的需求。发出各种指令确保车辆在制动、加速、转向等情况下行驶的稳定性。结构如图1所示:  相似文献   

6.
针对车辆行驶过程中的状态估计问题,提出了基于强跟踪容积卡尔曼滤波的车辆行驶状态估计算法。建立了采用Dugoff轮胎模型非线性3自由度车辆估算模型,通过对纵向加速度、侧向加速度、横摆角速度、转向盘转角和车轮轮速低成本传感器信号的信息融合以实现对车辆行驶状态的准确估计。应用驾驶员模拟器进行在环试验结果表明,基于强跟踪容积卡尔曼滤波的估计算法能够较准确地对车辆行驶状态进行估计。  相似文献   

7.
<正>车型:F02。行驶里程:30000km。故障现象:用户反映车辆有时在低速行驶时突然出现变速器报警的故障现象,报警后车辆无法行驶,无法切换挡位,熄火车辆,关闭点火开关,故障现象消除。行驶中又会偶然出现。故障诊断:车辆到店后首先通过ISID进行诊断测试,读取故障内容如下:◆ 400625涡轮转速传感器过小  相似文献   

8.
ESP系统是博世公司1995年推出的,意为“车辆电子稳定系统”(Electronic Stability Program,以下简称“ESP”)。其工作原理是,传感器按照每秒25次的频率检测驾驶员的行驶意图和车辆的实际行驶情况。如果发现有紧急情况,它会迅速做出反应,中央处理器经过分析传感器传来的信号,通过液压调节器调节每个车轮的制动压力,从而及时调整车辆的行驶状态,维护车辆的行驶稳定性。如有可能,还会干预发动机和传动系统的工作,同时能降低车辆侧滑的危险,从而降低事故的发生。ESP是一项主动安全系统,能始终处于工作状态,不停地监控车辆行驶状态和观察驾驶者的意图,  相似文献   

9.
王伟  陈慧  刁增祥 《汽车工程》2007,29(8):681-685,697
介绍了具有自动寻迹行驶和遥控行驶2种模式的无人驾驶电动游览车,该车采用光电传感器自动辨识行驶路径,自动完成寻迹行驶,且在自主行驶过程中通过超声波传感器探测技术自动检测障碍物信息,具有防碰撞功能,在底盘控制上实现了无人驾驶技术、轮毂电机驱动技术和线控转向技术以及防碰撞技术等的集成控制,对于实现车辆的智能驾驶具有重要意义。  相似文献   

10.
车辆行驶称重技术是通过测量分析车辆轮胎与路面作用力,从而计算车辆的静态载荷和静态轴载等相关参数的车辆载荷检测技术。基于人工神经网络综合分析了影响轮胎作用力的各个因素的影响关系,通过自行研制的油管传感器式车辆行驶称重仪进行了相关试验验证,达到了预定的精度和实用要求。  相似文献   

11.
Yaw rate and side-slip control considering vehicle longitudinal dynamics   总被引:1,自引:0,他引:1  
Most conventional vehicle stability controllers operate on the basis of many simplifying assumptions, such as a small steering wheel angle, constant longitudinal velocity and a small side-slip angle. This paper presents a new approach for controlling the yaw rate and side-slip of a vehicle without neglecting its longitudinal dynamics and without making simplifying assumptions about its motion. A sliding-mode controller is used to develop a differential braking controller for tracking a desired vehicle yaw rate for a given steering wheel angle, while keeping the vehicle’s side-slip angle as small as possible. The trade-off that exists between yaw rate and side-slip control is described. Conventional and proposed algorithms are presented, and the effectiveness of the proposed controller is investigated using a seven-degree-of-freedom vehicle dynamics model. The simulation results demonstrate that the proposed controller is more effective than the conventional one.  相似文献   

12.
为了提高汽车在突发爆胎事故时的稳定性,对爆胎汽车主动制动控制策略进行了研究。根据车轮爆胎时间与压力变化的关系,在UniTire模型基础上建立了爆胎模型;根据电子稳定性控制系统中横摆角速度及质心侧偏角对汽车稳定性影响的关系,基于二自由度汽车动力学模型,通过计算汽车横摆角速度及质心侧偏角实际值与理想值的偏差,并基于线性二次型调节器最优控制方法决策出最优附加横摆力矩,从而修正爆胎后汽车的运动状态。最后通过计算机仿真对所提策略的有效性进行了验证。结果表明:主动制动控制策略可以保证爆胎过程中汽车的行驶稳定性和安全性。  相似文献   

13.
为改善分布式驱动电动汽车高速行驶稳定性,避免频繁驱动控制操作对汽车行驶安全性的影响,提出了一种适应不同驾驶工况的参数动态门限值算法,设计了汽车附加横摆力矩滑模控制策略和驱动力矩二次规划优化分配控制策略,并进行了角阶跃输入工况和双正弦输入工况的仿真分析。结果表明,所设计的控制策略能有效控制汽车的质心侧偏角与横摆角速度,在保证汽车行驶稳定性的前提下,使质心侧偏角与理想值偏差减小了3.6%以上,轮胎附着利用率减少19.5%以上,有效地降低了轮胎附着利用率,提高了汽车的行驶安全性。  相似文献   

14.
The integrated longitudinal and lateral dynamic motion control is important for four wheel independent drive (4WID) electric vehicles. Under critical driving conditions, direct yaw moment control (DYC) has been proved as effective for vehicle handling stability and maneuverability by implementing optimized torque distribution of each wheel, especially with independent wheel drive electric vehicles. The intended vehicle path upon driver steering input is heavily depending on the instantaneous vehicle speed, body side slip and yaw rate of a vehicle, which can directly affect the steering effort of driver. In this paper, we propose a dynamic curvature controller (DCC) by applying a the dynamic curvature of the path, derived from vehicle dynamic state variables; yaw rate, side slip angle, and speed of a vehicle. The proposed controller, combined with DYC and wheel longitudinal slip control, is to utilize the dynamic curvature as a target control parameter for a feedback, avoiding estimating the vehicle side-slip angle. The effectiveness of the proposed controller, in view of stability and improved handling, has been validated with numerical simulations and a series of experiments during cornering engaging a disturbance torque driven by two rear independent in-wheel motors of a 4WD micro electric vehicle.  相似文献   

15.
This exploratory study considers applications of active aerodynamic devices for suppressing parasitic motion and for improving the response of vehicles to steering, within the scope of the linear dynamic behaviour. A three DOF linear model is chosen to describe the side slip, yaw and roll motion of a baseline front-wheel steered vehicle. The improvements in performance of the base-line vehicle that are achievable by the application of direct yaw and roll moments are determined when either an open loop control pre-filter or a state feedback control law based on LQR design is applied. Unlike the former control, the state feedback control is unable to make the body side-slip angle vanish. The feedback control performance of each of the two moment actuators has been examined separately and then jointly. The advantages of combining the open loop and feedback dual actuator configurations are demonstrated using the two-degree of freedom control scheme. It is found that the scheme yields a spectacular performance but demands unreasonably large moments from the actuators in the context of available aerodynamic forces. On the other hand, the demand on direct yaw and roll moment of actuators is modest when the actuators are controlled using the LQR feedback only and if the control design is used to track a desired yaw rate trajectory and simultaneously to reduce the parasitic rolling motion. Significant improvements in handling and dynamic stability of a base-line vehicle can be achieved by aerodynamically generated direct yaw and roll actuator moments provided the target control performance is reasonable. The configurations of aerodynamic actuators considered are feasible for improving vehicle handling in cornering on motorways but more work remains to be done to explore alternative aerodynamic configurations that give rise to less side effects and higher lift coefficients.  相似文献   

16.
This exploratory study considers applications of active aerodynamic devices for suppressing parasitic motion and for improving the response of vehicles to steering, within the scope of the linear dynamic behaviour. A three DOF linear model is chosen to describe the side slip, yaw and roll motion of a baseline front-wheel steered vehicle. The improvements in performance of the base-line vehicle that are achievable by the application of direct yaw and roll moments are determined when either an open loop control pre-filter or a state feedback control law based on LQR design is applied. Unlike the former control, the state feedback control is unable to make the body side-slip angle vanish. The feedback control performance of each of the two moment actuators has been examined separately and then jointly. The advantages of combining the open loop and feedback dual actuator configurations are demonstrated using the two-degree of freedom control scheme. It is found that the scheme yields a spectacular performance but demands unreasonably large moments from the actuators in the context of available aerodynamic forces. On the other hand, the demand on direct yaw and roll moment of actuators is modest when the actuators are controlled using the LQR feedback only and if the control design is used to track a desired yaw rate trajectory and simultaneously to reduce the parasitic rolling motion. Significant improvements in handling and dynamic stability of a base-line vehicle can be achieved by aerodynamically generated direct yaw and roll actuator moments provided the target control performance is reasonable. The configurations of aerodynamic actuators considered are feasible for improving vehicle handling in cornering on motorways but more work remains to be done to explore alternative aerodynamic configurations that give rise to less side effects and higher lift coefficients.  相似文献   

17.
Direct yaw moment control (DYC), which differentially brakes the wheels to produce a yaw moment for the vehicle stability in a steering process, is an important part of electric stability control system. In this field, most control methods utilise the active brake pressure with a feedback controller to adjust the braked wheel. However, the method might lead to a control delay or overshoot because of the lack of a quantitative project relationship between target values from the upper stability controller to the lower pressure controller. Meanwhile, the stability controller usually ignores the implementing ability of the tyre forces, which might be restrained by the combined-slip dynamics of the tyre. Therefore, a novel control algorithm of DYC based on the hierarchical control strategy is brought forward in this paper. As for the upper controller, a correctional linear quadratic regulator, which not only contains feedback control but also contains feed forward control, is introduced to deduce the object of the stability yaw moment in order to guarantee the yaw rate and side-slip angle stability. As for the medium and lower controller, the quantitative relationship between the vehicle stability object and the target tyre forces of controlled wheels is proposed to achieve smooth control performance based on a combined-slip tyre model. The simulations with the hardware-in-the-loop platform validate that the proposed algorithm can improve the stability of the vehicle effectively.  相似文献   

18.
《JSAE Review》2002,23(4):473-480
This paper presents a comparison study of the effect of model response on the performance of the model following type combined lateral force and yaw moment control. The combined controls aim to maximize stability limit as well as vehicle responsiveness. In order to realize this aim, two types of model responses are proposed to introduce the required lateral force and yaw moment control. The model responses (a) is the side-slip angle and yaw rate vehicle response of the two degree of freedom vehicle motion (bicycle model). The model responses (b) is an intentional modification from the model responses (a) to the side slip angle converging to zero and first order yaw rate. Three different cases of combining lateral force and yaw moment control have been investigated using the two types of model responses. The effect of model responses is proved by computer simulations of the vehicle response to a single sine wave steering input with braking for the combined control methods proposed. It is found that the influence of the model response has a significant effect on the combined control performance.  相似文献   

19.
An integrated control system of active rear wheel steering (4WS) and direct yaw moment control (DYC) is presented in this paper. Because of the tire nonlinearity that is mainly due to the saturation of cornering forces, vehicle handling performance is improved but limited to a certain extent only by steering control. Direct yaw moment control using braking and/or driving forces is effective not only in linear but also nonlinear ranges of tire friction circle. The proposed control system is a model matching controller which makes the vehicle follow the desired dynamic model by the state feedback of both yaw rate and side slip angle. Various computer simulations are carried out and show that vehicle handling performance is much improved by the integrated control system.  相似文献   

20.
SUMMARY

An integrated control system of active rear wheel steering (4WS) and direct yaw moment control (DYC) is presented in this paper. Because of the tire nonlinearity that is mainly due to the saturation of cornering forces, vehicle handling performance is improved but limited to a certain extent only by steering control. Direct yaw moment control using braking and/or driving forces is effective not only in linear but also nonlinear ranges of tire friction circle. The proposed control system is a model matching controller which makes the vehicle follow the desired dynamic model by the state feedback of both yaw rate and side slip angle. Various computer simulations are carried out and show that vehicle handling performance is much improved by the integrated control system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号