首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对素混凝土柱和钢筋混凝土柱进行800 d的收缩对比试验,研究钢筋混凝土柱收缩特性,探讨了钢筋对混凝土收缩应变影响系数,并在考虑配筋的情况下对CEB-FIP模型和中国建科院模型进行了修正.通过国内外收缩应变预测模型对比得出,GZ (1993)模型整体预测效果较好,ACI-209模型预测效果最差.结合CEB-FIP模型和中国建科院模型对实测数据进行拟合回归分析,计算出钢筋对混凝土收缩应变的影响系数,与时变函数采用CEB-FIP模型和中国建科院模型的Trost方法进行对比,发现Trost方法中钢筋对混凝土收缩应变影响系数考虑偏低,因此在计算钢筋对收缩应变影响系数公式时仅考虑配筋率是不够的.  相似文献   

2.
以8根不同掺量的高性能粉煤灰混凝土无黏结预应力梁的收缩徐变试验为基础,提出了从混凝土模型梁短期试验值推算相应混凝土梁在该桥梁工作环境下收缩应变及徐变系数的方法,进而得出桥梁的徐变长期效应计算式;结合桥梁规范JTG D62-2004中收缩模型与徐变模型的思想,得出计算混凝土桥梁收缩应变及徐变系数的修正公式.该公式预测值与试验结果的比较表明:预测值具有较好的精度,且该预测方法不需做材料的收缩徐变试验,亦避免了从标准环境下用试验值推算桥梁工作环境下收缩徐变可能产生的误差.  相似文献   

3.
为明确室内环境下普通及补偿收缩超高性能混凝土(UHPC)的收缩徐变特征,分别对这2种超高性能混凝土进行持续1 080 d的力学、收缩和徐变性能测试,分析了补偿收缩组分对超高性能混凝土性能的影响规律。基于收缩和徐变的试验结果,分析了国内外3种不同规范公式对室内环境下超高性能混凝土收缩徐变预测的适用性,并引入相应的修正系数对既有收缩徐变模型进行修正,使之适用于补偿收缩超高性能混凝土的收缩徐变预测。结果表明:①补偿收缩组分的加入对超高性能混凝土的力学性能有负面影响,使立方体抗压强度、棱柱体抗压强度和弹性模量分别降低4.3%、5.1%和4.2%。②UHPC棱柱体抗压强度和弹性模量与立方体抗压强度间存在良好的统计关系,且该统计关系受配合比和龄期的影响较小。③补偿收缩组分能有效抑制超高性能混凝土的收缩,使收缩降低28.9%,但对徐变有负面影响,使徐变应变、徐变系数和徐变度分别增加13.3%、9.3%和15.8%。④DBJ43/T325—2017的收缩、徐变模型对室内环境下普通超高性能混凝土的收缩徐变均给予较好的预测,预测误差分别在4%和6%以内;SIA 2052—2016仅有收缩模型的预测结果与实测结果较好地吻合;引入收缩和徐变修正系数后的修正模型能分别对补偿收缩超高性能混凝土的收缩和徐变予以较好地预测,预测误差也分别在4%和6%以内。  相似文献   

4.
依托青岛市地铁8号线工程的实际应用,采用midas Civil 2015软件对圆端形花瓶墩进行了空间受力分析,对墩顶瓶口段计算方法及配筋方式进行分析总结。计算结果验证了《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG 3362—2018)中拉压杆模型构形的合理性,为此后同类结构计算提供一定参考。  相似文献   

5.
刘国光 《城市道桥与防洪》2020,(5):119-123,M0013,M0014
结合《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JGT 3362—2018)相关条文,列举了影响混凝土收缩和徐变的各类因素,选取了其中对组合梁设计密切相关的参数,详细分析了其对收缩应变、徐变系数、结构变形以及钢、混凝土各自应力的影响。  相似文献   

6.
为考察JTG D62-2004混凝土收缩徐变模型在预应力混凝土连续刚构上的适用性,以芝来沟大跨预应力混凝土连续刚构桥为工程背景,采用现场实测和理论模型对比的方法,对比分析了桥墩、主梁底板、主梁顶板的收缩徐变。结果表明,JTG D62-2004模型可以很好的对桥墩、主梁底板的收缩徐变进行预测,而对主梁顶板来说则需要乘1.8倍的修正系数。该结论可供设计、施工监控等部门参考。  相似文献   

7.
为选择一种精度较高的混凝土收缩徐变预测模型进行大跨度高速铁路钢-混结合梁结构体系的收缩徐变效应分析,以昌吉赣客专赣州赣江特大桥为背景进行研究。设计钢-混结合梁等效节段模型,开展节段模型施工全过程的收缩徐变效应试验;采用MIDAS FEA建立钢-混结合梁节段的精细化有限元模型,分析5种预测模型(CEB-FIP90模型、ACI209模型、EN1992-2模型、JTG D62-2015模型和JSCE模型)下钢-混结合梁节段的收缩徐变效应,并与实测结果进行对比。结果表明:CEB-FIP90预测模型的计算结果与实测值吻合较好,预测精度较高,可以采用该模型进行钢-混结合梁的收缩徐变效应预测分析。  相似文献   

8.
高强混凝土收缩徐变试验及预测模型研究   总被引:1,自引:0,他引:1  
通过苏通大桥连续刚构所用高强混凝土的收缩徐变试验,以及其他几组不同强度等级的高强混凝土收缩徐变试验,探讨了目前常用收缩徐变模型对高强混凝土收缩徐变的适用性。试验结果表明,高强混凝土的徐变系数一般低于常用的徐变模型预测值;而现桥规采用的CEB-FIP90收缩模型有低估高强混凝土收缩发展的危险,并且,随着混凝土抗压强度的提高,预测精度有降低的趋势。针对高强混凝土收缩徐变的特点,提出了考虑混凝土强度因素的修正收缩、徐变模型。最后运用B3变异系数法比较了这几种模型预测高强混凝土收缩徐变的精度,比较结果表明,修正收缩、徐变模型对高强混凝土收缩徐变预测的精度相对于现有模型有较大提高。  相似文献   

9.
根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG 3362—2018),通过手工及专业软件分别计算了40 m跨径后张法预应力混凝土小箱梁的跨中截面底缘正应力,比较了两者计算结果的差异,通过分析找出了差异产生的原因,并提出了解决办法。  相似文献   

10.
混凝土收缩徐变的影响因素较复杂,建立预测模型时如果无法确定每个因素的重要性,会导致模型的泛化能力降低。敏感性分析是一种量化影响因素贡献的方法。文中提出了一种BP-EFAST(扩展傅里叶幅度灵敏度检验)的敏感性分析方法,建立全连接BP神经网络收缩徐变预测模型,在评价现有收缩徐变经验预测模型的基础上,采用EFAST方法分析混凝土收缩徐变影响因素的敏感性。结果表明,相较于收缩徐变经验预测模型,BP模型的预测误差更小,预测范围更大;收缩龄期(持荷龄期)、体积表面积比、环境湿度对收缩徐变的敏感性较高,与混凝土收缩徐变机理相符;混凝土收缩的敏感因素有收缩龄期、体积表面积比、养护龄期、水灰比、环境相对湿度、28 d抗压强度,混凝土徐变的敏感因素有持荷龄期、水灰比、水泥含量、体积表面积比、环境相对湿度、28 d抗压强度、28 d弹性模量、加载龄期。  相似文献   

11.
为了总结特殊温湿度条件下混凝土的收缩及徐变研究现状,采用文献调查与归纳总结的方法,概述了恒定及变化温湿度环境下混凝土的收缩及徐变特性;介绍几个经典的收缩徐变预测模型及其构造方式,并总结了特殊温湿度环境下混凝土收缩徐变的抑制措施.分析表明:针对该领域未来的主要研究方向为通过试验或模拟对经典模型进行修正及阐释不同环境影响收...  相似文献   

12.
根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)和美国AASHTO LRFD桥梁设计规范提供的混凝土徐变系数和收缩应变计算公式,运用Midas/Civil软件对比分析了贵州赫章特大桥在不同阶段下预应力损失及其对主梁变形的影响。结果表明,按2种规范计算得到的预应力管道摩阻损失基本相同,由锚具变形、弹性压缩和预应力筋应力松弛引起的预应力损失,AASHTO LRFD规范计算值略大于JTG D62—2004,然而由于2种规范在混凝土徐变、收缩计算公式上的不同,按照AASHTO LRFD规范计算由混凝土徐变收缩引起的预应力损失和主梁变形较JTG D60—2004大。  相似文献   

13.
宿辉  尹文强  王翀  刘世伟  王云飞 《隧道建设》2020,40(12):1700-1708
为分析隧洞围岩温度和洞室环境湿度对喷射混凝土细观孔隙结构特征及单轴抗压强度的影响,采用室内CT扫描和无侧限压缩试验的方法,测试不同围岩温度、湿度条件下喷射混凝土细观孔隙结构的分布特征和单轴抗压强度,建立基于细观结构参数的喷射混凝土单轴抗压强度预测模型。研究结果表明: 1)低湿环境(湿度25%)下,高岩温诱发喷射混凝土孔隙结构和力学性能劣化,温度越高劣化影响越显著,喷射混凝土单轴抗压强度可采用Schiller模型预测; 2)高湿环境(湿度95%)下,60 ℃岩温是喷射混凝土力学性能和孔隙结构特征发生劣化转变的临界温度; 3)引入相对湿度影响系数建立的高湿环境喷射混凝土抗压强度预测模型,其预测结果与试验结果较吻合。  相似文献   

14.
刘陆平 《城市道桥与防洪》2020,(2):159-162,M0018
针对分别采用《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG 3362—2018、JTG D62—2004、JTJ 023—1985)设计的满堂支架现浇施工连续梁桥进行确定性和可靠性对比分析,通过有限元程序对成桥阶段选取的典型截面可靠指标进行计算。结果表明,确定性分析和可靠性分析结果有不同规律,不能单从确定性分析结果的大小来判断结构安全储备,需将确定性分析与可靠性分析相结合,才能对结构有合理准确的判断与评价。  相似文献   

15.
将预测的素混凝土和钢筋混凝土的徐变和收缩值,与在八个月期间的试验值相比较,比较包括对称和不对称分布的钢筋,尽管徐变和收缩的总变形可以很精确地估计,但已建立的预测方法过高估计了素混凝土的徐变和钢筋混凝土的收缩,对种种推荐的钢筋混凝土变形折减系数的分析,暗示出素混凝土徐变影响模量比的作用,有 于徐变和收缩的精确预测结果,就钢筋混凝土的徐变而言,素混凝土的徐变不重要,但就钢筋混凝土的收缩而言,看来素混凝土的受拉徐变,而不是受压徐变,则可能具有重要意义。  相似文献   

16.
收缩徐变是导致大跨度预应力混凝土箱梁桥长期变形的重要因素,现有桥梁长期变形分析中通常采用CEB-FIP 90模型,计算结果会出现较大偏差。为减小预应力混凝土箱梁桥长期变形的计算误差,以某三跨预应力混凝土连续箱梁桥为背景,对该桥相同配比的高强混凝土进行了标准徐变试验,将实测数据拟合得到指数型收缩徐变模型,并根据该桥混凝土构件实际尺寸效应、湿度效应、钢筋配筋率和持荷年限对徐变系数进行修正。由此计算得到该桥的长期变形与实测数据吻合较好,验证了指数型收缩徐变模型比现有徐变模型具有更高的预测精度。  相似文献   

17.
拉-压杆模型设计法因其力学概念清晰,设计计算简便,受到国内外广泛关注,欧美等技术发达国家先后将其纳入混凝土结构设计标准。我国新修订的JTG 3362—2018《公路钢筋混凝土及预应力混凝土桥涵设计规范》已将其正式引入。全面介绍拉-压杆模型的设计原理、建模原则、实施步骤与校验方法,并以一混凝土桥墩支座设计为例,对比中欧标准关于拉-压杆模型设计方法的异同点,以期对工程设计人员了解欧洲标准有所帮助。  相似文献   

18.
《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG 3362-2018)基于应力扰动区(D区)刚性拉压杆模型给出了短悬臂盖梁承载能力极限状态的计算方法,但对于正常使用极限状态抗裂验算未进行规定。如果按刚性拉压杆模型进行抗裂验算,则拉杆钢筋的应力往往偏大,配筋将过于保守。实际上拉杆和压杆刚度相差较大,按有限变位的柔性拉压杆模型推导了拉杆拉力的计算公式,并结合工程实例采取有限元实体模型进行验证,结果表明柔性拉压杆模型计算结果精度更高,与有限元分析结果更吻合,相关结论可供类似工程参考。  相似文献   

19.
为提高混凝土长期徐变预测精度,通过对不同加载龄期的苏通大桥用3组高强混凝土进行徐变试验,根据1个月内的试验结果,采用不同方法对ACI 209R,CEB-FIP 1990和B3徐变预测模型分别进行修正,通过比较变异系数及1年徐变试验结果,分析不同修正后模型的预测精度,结果表明,对于苏通大桥用高强混凝土,修正B3徐变模型具有最高的预测精度。  相似文献   

20.
混凝土的收缩徐变对结构受力及预应力损失影响显著,准确了解复掺粉煤灰和矿粉的高性能混凝土在暴露环境中的收缩徐变是一项重要任务。为了更好的服务于工程,本文结合工地现场实际情况,采用相同的混凝土材料、配合比、加载龄期及暴露环境,进行暴露环境下高性能混凝土的收缩徐变试验。试验结果表明:掺与粉煤灰与矿粉的高性能混凝土前期比普通混凝土的收缩徐变要大,之后要小于普通的混凝土收缩徐变,在100天左右趋于稳定。暴露环境使混凝土的收缩徐变出现波动,混凝土在收缩徐变的过程中出现反复现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号