首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY

The performance of neural networks to be used for identification and optimal control of nonlinear vehicle suspensions is analyzed. It is shown that neuro-vehicle models can be efficiently trained to identify the dynamical characteristics of actual vehicle suspensions. After trained, this neuro-vehicle is used to train both front and rear suspension neuro-controllers under a nonlinear rear preview control scheme. To do that, a neuro-observer is trained to identify the inverse dynamics of the front suspension so that front road disturbances can be identified and used to improve the response of the rear suspension. The performance of the vehicle with neuro-control and with LQ control are compared.  相似文献   

2.
汽车磁流变非线性悬架模糊控制   总被引:2,自引:0,他引:2  
邓志党  高峰  高献栋 《汽车技术》2006,(12):27-30,45
建立了整车悬架系统的三维模型,根据试验数据得出了前后悬架弹簧的非线性特性曲线。前后悬架减振器均采用磁流变减振器,采用Bouc-Wen参数化模型为其阻尼力模型。采用模糊控制算法为整车半主动控制算法,采用ADAMS和Matlab联合对整车平顺性进行仿真。结果表明,采用模糊控制算法控制磁流变非线性悬架可提高整车的平顺性。  相似文献   

3.
汽车非线性半主动悬架的模糊神经网络控制   总被引:8,自引:0,他引:8  
李以农  郑玲 《汽车工程》2004,26(5):600-604,628
考虑磁流变减振器阻尼力和悬架弹性元件非线性特性,建立车辆6自由度的半主动悬架非线性动力学模型。提出了一种基于模糊神经网络系统结构的模型参考自适应控制方法来研究汽车半主动悬架的非线性控制问题,并考虑半车模型前后悬架的输入时滞,对其进行了仿真研究。研究结果表明:运用模糊神经网络非线性控制方法能够使人体和车身垂直加速度、俯仰角加速度都得到很大的衰减,证实这种模糊神经网络控制方法可大大减少路面对车身的振动冲击,提高汽车行驶平顺性。  相似文献   

4.
Nonlinear Backstepping Active Suspension Design Applied to a Half-Car Model   总被引:1,自引:0,他引:1  
A fresh nonlinear backstepping design scheme, which is developed for the control of half-car active suspension systems to improve the inherent tradeoff between ride quality and suspension travel, is proposed in this paper. Since ride quality is dependent on a combination of vertical and angular displacements of a vehicle body, the design of active suspensions must have the potential to minimize heave and pitch movements in order to guarantee the ride comfort of passengers. The other important factor to be emphasized in the design of active suspensions is the suspension travel which means the space variation between the car body and the tires. In order to avoid damaging vehicle components and generating more passenger discomfort, the active suspension controllers must be capable of preventing the suspension from hitting its travel limits. Our design strategy, with two intentionally additional nonlinear filters, shows the potential to achieve these conflicting control objectives. The novelty of our active suspension design is in the use of two particular nonlinear filters at both the front and rear wheels. The effective bandwidths of these two nonlinear filters depend on the magnitudes of the front and rear suspension travels, individually. When suspension travel is small, the proposed controllers soften the suspension for enhancing passenger comfort. However, our control design shifts its attention to rattlespace utilization by stiffening the suspension when suspension travel approaches its limits. As a result, the improvement of tradeoff between ride quality and suspension travel can be guaranteed and is then demonstrated through comparative simulations.  相似文献   

5.
6自由度半车悬架解耦及其分层振动控制的研究   总被引:2,自引:0,他引:2  
通过对6自由度半车悬架簧载质量的受力分析,推导出其前后1/4悬架间的定量耦合关系,并以其为基础构建分层振动控制算法.中央控制层以悬架质心处的垂向加速度和俯仰角加速度为控制目标,前后两个1/4悬架构成的两个底层分别采用H_∞和LQR控制策略,并接受中央控制层的协调指令.利用MATLAB的仿真表明,与传统控制相比,分层控制由于前后两个1/4悬架的控制量可以并行解算,计算时间大幅缩短,因而可针对路面激励实施详尽的控制,达到了改善车辆行驶平顺性的目的.  相似文献   

6.
A vehicle model incorporating front and rear wheel suspensions and seat suspension is presented. The suspension control includes algorithms to provide both dynamic and steady state (levelling) control. Vehicle response to (a) vertical inputs due to ground disturbances at the wheels and (b) longitudinal inputs due to the inertial forces during braking and accelerating, are investigated. It is shown that the static (self-levelling) control causes a slight deterioration in dynamic performance. The active ride control produces improvements of ride comfort under dynamic conditions compared to an equivalent passively suspended vehicle. In steady state the proposed control eliminates the error heave of the body caused by tilting of the vehicle with active suspension.  相似文献   

7.
Recent data show that 35% of fatal crashes in sport utility vehicles included vehicle rollover. At the same time, experimental testing to improve safety is expensive and dangerous. Therefore, multi-body simulation is used in this research to improve the understanding of rollover dynamics. The majority of previous work uses low-fidelity models. Here, a complex and highly nonlinear multi-body model with 165 degrees of freedom is correlated to vehicle kinematic and compliance (K&C) measurements. The Magic Formula tyre model is employed. Design of experiment methodology is used to identify tyre properties affecting vehicle rollover. A novel, statistical approach is used to link suspension K&C characteristics with rollover propensity. Research so far reveals that the tyre properties that have the greatest influence on vehicle rollover are friction coefficient, friction variation with load, camber stiffness and tyre vertical stiffness. Key K&C characteristics affecting rollover propensity are front and rear suspension rate, front roll stiffness, front camber gain, front and rear camber compliance and rear jacking force.  相似文献   

8.
Airsprings have been used for vehicle suspensions over the last 40 years. They are mostly used as independent suspensions. Analysis of air springs available in literature is mostly limited to a single-degree-of-freedom system or a two-degrees-of-freedom system only in the translation mode. This paper deals with a model of a vehicle where the front and the rear springs are connected by a capillary tube. A two-degrees-of-freedom model having motion in bounce and pitch mode is presented. Equations of mass flow are linearized on the assumption of small variations in volume and pressure. Expressions for the transmissibility and the phase angle in the bounce and the pitch mode are derived. Road inputs to the front and the rear axles are assumed to be identical except for a phase difference between them. The effect of the capillary flow coefficient and that of the phase angle between the front and the rear axle excitation are studied. It is shown that an optimum value of the capillary flow coefficient exists which minimizes the transmissibility of motion in both modes over the entire frequency range. It is also observed that a phase angle of 180 degrees presents ideal transmissibility characteristics. Thus, a promising application of air springs for a vehicle suspension is presented.  相似文献   

9.
基于ADAMS与Matlab的ABS模糊控制仿真研究   总被引:2,自引:0,他引:2  
张云清  熊小阳  陈伟  覃刚  陈立平 《公路交通科技》2007,24(11):148-153,158
将多体系统动力学与智能控制理论相结合对汽车制动防抱死控制系统进行了研究,利用ADAMS/CAR建立了汽车整车的多体力学模型,模型包含了前后悬架、动力总成、转向系统、稳定杆、制动系、轮胎力学模型以及车身,同时也考虑了轮胎、衬套、弹簧、减震器等部件的非线性,准确地表达了车辆的动态特性;利用Matlab/Simulink模糊控制工具箱建立了制动防抱死控制系统的模糊控制策略,利用ADAMS/Control接口进行模型的集成、协同仿真,并将仿真结果与另一种控制策略一逻辑门限值控制的仿真结果进行了比较和分析,仿真反映出模糊控制在整车制动防抱死控制系统上的应用效果,结果表明该控制算法稳定好并具有较强的鲁棒性。  相似文献   

10.
SUMMARY

Airsprings have been used for vehicle suspensions over the last 40 years. They are mostly used as independent suspensions. Analysis of air springs available in literature is mostly limited to a single-degree-of-freedom system or a two-degrees-of-freedom system only in the translation mode. This paper deals with a model of a vehicle where the front and the rear springs are connected by a capillary tube. A two-degrees-of-freedom model having motion in bounce and pitch mode is presented. Equations of mass flow are linearized on the assumption of small variations in volume and pressure. Expressions for the transmissibility and the phase angle in the bounce and the pitch mode are derived. Road inputs to the front and the rear axles are assumed to be identical except for a phase difference between them. The effect of the capillary flow coefficient and that of the phase angle between the front and the rear axle excitation are studied. It is shown that an optimum value of the capillary flow coefficient exists which minimizes the transmissibility of motion in both modes over the entire frequency range. It is also observed that a phase angle of 180 degrees presents ideal transmissibility characteristics. Thus, a promising application of air springs for a vehicle suspension is presented.  相似文献   

11.
In this paper, an advanced control technique that can be implemented in hard emergency situations of vehicles is introduced. This technique suggests integration between Active Front Steering (AFS) and Active Roll Moment Control (ARMC) systems in order to enhance the vehicle controllability. For this purpose, the AFS system applies a robust sliding mode controller (SMC) that is designed to influence the steering input of the driver by adding a correction steering angle for maintaining the vehicle yaw rate under control all the time. The AFS system is then called active-correction steering control. The ARMC system is designed to differentiate the front and rear axles' vertical suspension forces in order to alter the vehicle yaw rate and to eliminate the vehicle roll motion as well. Moreover, the operation of the SMC is based on tracking the behavior of a nonlinear 2-wheel model of 2-DOF used as a reference model. The 2-wheel model incorporates real tire characteristics, which can be inferred by the use of trained neural networks. The results clearly demonstrate the enhanced characteristics of the proposed control technique. The SMC with the assistance of the ARMC provides less correction of the steering angle and accordingly reduces the possibility of occurrence of the saturation phenomenon that is likely to take place in the operation of the SMC systems.  相似文献   

12.
Based on a mathematical model of an actively suspended vehicle, the effects of the following issues in deriving the control laws are studied:

(a)representation of the ground surface as integrated or filtered white noise.

(b)cross-correlation between left and right track inputs.

(c)wheelbase time delay between front and rear inputs.

The third of these issues is shown to be by far the most important. Considerable improvements at the rear suspension can be obtained if the control law includes the information that the rear input is simply a delayed version of the front input. Effectively this provides feedforward terms in the control law for the rear actuator. For the full state feedback case, these improvements are indicated by reductions in the rear body acceleration and rear dynamic tyre load of around 20% and 40% respectively with no increase in suspension working space.  相似文献   

13.
在车型开发前期对悬架系统刚度、阻尼进行合理的优化匹配,不仅能缩短整车开发周期,同时还能提升整车性能,基于欧雷准则,以车辆二自由度模型为基础研究了前、后悬架刚度优化匹配的方法,并在某电动车动力学性能开发前期得以应用,通过实车试验与优化结果对比充分验证了该方法具有一定的工程应用价值,且能够大大缩短样车开发周期。  相似文献   

14.
基于ADAMS的空气悬架客车平顺性仿真与试验   总被引:1,自引:0,他引:1  
以多体系统动力学理论为基础,应用机械系统仿真分析软件ADAMS,创建空气悬架客车前悬架、后悬架的多体系统动力学模型,包括转向系、发动机、车身、前后轮胎等在内的整车虚拟样机模型。并通过编制路面谱文件对虚拟模型进行平顺性仿真和悬挂系统固有频率仿真试验,结果显示该车的平顺性能比较理想。将仿真结果与样车道路试验结果进行对比,发现二者比较吻合,从而验证了所创建的虚拟样机模型的可靠性。研究结果表明虚拟试验可以有效地分析汽车的平顺性。  相似文献   

15.
文章基于有限元法,采用ADAMS软件,对某商用车型前后悬架系统进行了KC仿真分析,分析结果显示,各工况下,前后悬架横向刚度满足性能目标,KC性能满足动态属性目标要求.  相似文献   

16.
Active control of non-stationary response of a single degree of freedom vehicle model with nonlinear passive suspension elements is considered in this paper. The method of equivalent linearization is used to derive the equivalent linear model and the optimal control laws are obtained by using stochastic optimal control theory based on full state information. Velocity squared quadratic damping and hysteresis type of stiffness nonlinearities are considered. The effect of the nonlinearities on the active system performance is studied. The performance of active suspensions with nonlinear passive elements is found to be superior to the corresponding passive suspension systems.  相似文献   

17.
SUMMARY

Active control of non-stationary response of a single degree of freedom vehicle model with nonlinear passive suspension elements is considered in this paper. The method of equivalent linearization is used to derive the equivalent linear model and the optimal control laws are obtained by using stochastic optimal control theory based on full state information. Velocity squared quadratic damping and hysteresis type of stiffness nonlinearities are considered. The effect of the nonlinearities on the active system performance is studied. The performance of active suspensions with nonlinear passive elements is found to be superior to the corresponding passive suspension systems.  相似文献   

18.
An active suspension with preview is developed for the rear axle of a commercial vehicle. The obtained improvements are promising and justify further investigation of the more feasible semi-active suspensions with preview. The inherent non-linearity of semi-active suspensions with switching shock absorbers and the need for controllers that can handle a broad class of control objectives has led to the development of several numerical control methods for both multi-level and continuously variable shock absorbers. The most promising control method and shock absorber type are selected and mounted in a test vehicle. Some first experimental results are discussed.  相似文献   

19.
An active suspension with preview is developed for the rear axle of a commercial vehicle. The obtained improvements are promising and justify further investigation of the more feasible semi-active suspensions with preview. The inherent non-linearity of semi-active suspensions with switching shock absorbers and the need for controllers that can handle a broad class of control objectives has led to the development of several numerical control methods for both multi-level and continuously variable shock absorbers. The most promising control method and shock absorber type are selected and mounted in a test vehicle. Some first experimental results are discussed.  相似文献   

20.
The dynamic behavior of commercial vehicles fitted with differentr types of suspension mechanisms and steering devices is investigated in this paper. Six vehicle models have been constructed: 2WS-SA is a standard two wheel steering bus with solid axles; 2WS-DW is a 2WSA vehicle with independent double wishbone suspension in front and rear axles; SSA-SA is a 2WS system with solid axles, the rear one being mounted on a self steered mechanism; SSA-DW is a vehicle with independent double wishbone suspension in the front axle, and a solid self steered rear axle; 4WS-SA has four wheel steering with solid axles; and 4WS-DW is a 4WS vehicle with independent double wishbone suspension in front and rear axles. The dynamic response of these models has been assessed in terms of lateral acceleration, yaw velocity, tire forces, tire force reserves, and slip angles. The expected advantages of a 4WS system (higher acceleration rates and lower slip angles) will be corroborated but, at the same time, it will be shown that they are obtained at the cost of lower force reserves. Self steered mechanisms produce smaller body slip angles, but it will be shown that they give rise to larger yaw velocity overshootings. The particular independent suspension analyzed does not show significant improvements with respect to the solid axle counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号