首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提高VLCC侧向抗撞能力的一种新式双壳结构   总被引:13,自引:1,他引:12  
从防止油舱泄漏、保护海洋环境的角度来看,改进超大型油轮(VLCC)双壳舷侧结构的耐接性能是十分必要的。本文在研究标准VLCC双壳舷侧结构碰撞性能的基础上,通过引入耐撞结构NOHASⅡ的设计思想,并结合轴压下薄壁圆管的动态渐进屈曲特性,提出了一种改进的双壳设计概念--CCT。将CCT设计概念应用于299 500DWT标准VLCC。通过仿真计算和比较研究。CCT被证明是一种更加先进的设计概念,与现有的舷侧双壳结构设计相比,不仅具有最大的耐撞力,而且具有最好的耐撞性能。对VLCC而言,CCT型舷侧双壳结构是一种实用可行的防撞设计思想。  相似文献   

2.
双壳船内壳和外壳结构耐撞性能的分析和比较   总被引:1,自引:0,他引:1  
依据船舶加筋板结构缩尺模型的耐撞性试验数据,结合理论计算方法,详细讨论双壳船舷侧内壳和外壳结构的碰撞损伤特性,对其进行分析和比较。研究表明:双壳船舷侧内壳和外壳结构在耐碰撞能力方面的差异虽不是很大,但在渐进破坏过程及破坏模式方面却存在明显的区别。这些结论对于提升双壳船舷侧结构的耐撞性能具有一定的指导意义。  相似文献   

3.
采用数值仿真的方法对船舶碰撞动力学过程进行仿真再现。系列仿真计算结果表明,传统的舷侧结构在耐撞性能方面存在很多缺陷,针对大型VLCC船舶设计帽形、菱形、半圆管形三种新型纵桁形式的双层舷侧结构模型,并从碰撞载荷、结构损伤变形、能量的吸收与转换等角度对此三种新型舷侧结构与传统舷侧结构的耐撞性能进行对比分析,结果表明半圆管纵桁形式的双层舷侧结构模型具有最好的耐撞性。  相似文献   

4.
船舶碰撞通常导致船舱进水或变形、海洋环境污染以及人员伤亡等后果.为提高船舶舷侧的耐撞性,以某双壳油船舷侧为研究对象,设计一种齿型纵桁,并将其与传统舷侧结构相结合,形成一种新型舷侧结构.采用数值仿真软件建立舷侧模型,选取舷侧3个典型位置,对比新旧结构的吸能能力、碰撞力峰值和极限撞深.数值仿真结果表明:齿型纵桁舷侧结构具有较好的耐撞性.  相似文献   

5.
[目的]旨在研究某核动力平台双层舷侧结构的耐撞性能。[方法]分别建立全船和局部双层舷侧结构碰撞有限元模型,利用LS-DYNA软件进行碰撞仿真分析;在此基础上,设计双层舷侧结构准静态挤压缩比试验模型,开展相应准静态挤压试验,并与数值仿真结果进行对比。[结果]结果显示,对于船舶低速碰撞,局部结构模型与全船模型计算的结构响应基本一致。设计的准静态挤压缩比试验结果与数值仿真结果吻合较好,较好地反映了低速碰撞特性和结构变形模式,验证了数值仿真方法的正确性。双层舷侧结构的核动平台在受到5 000 t级船舶以2 m/s的速度碰撞时未发生破口,具有较好的抗碰撞性能。[结论]采用局部结构模型计算碰撞响应的精度较的,可大幅减少建模和计算的工作量。研究工作对于同类结构耐撞性能分析及碰撞试验研究具有一定的参考价值。  相似文献   

6.
一种基于IFP的单壳舷侧耐撞结构   总被引:7,自引:0,他引:7  
改进船体结构耐撞性是开展船舶碰撞研究的一个主要目的.结构耐撞性设计,就是在碰撞研究的基础上,对传统的舷侧结构进行优化设计,或者设计一些具有特殊吸能元件的新型船体结构形式,来改善船舶的结构耐撞性能.目前,船舶耐撞性的研究主要集中于双层舷侧结构,单壳舷侧结构的耐撞性研究开展得较少.IFP(Improved Frame Panel)是一种先进的舷侧骨架结构,它具有良好的吸能特性和结构强度,是一种理想的能量吸收单元.本文基于IFP构建了一种新式单壳舷侧耐撞结构,并将之应用于某型护卫舰.通过仿真计算和比较研究,证明IFP可以显著提高舰船的侧向抗撞能力,是一种先进的耐撞设计思想.  相似文献   

7.
一种基于内充泡沫塑料薄壁方管的单壳舷侧耐撞结构   总被引:7,自引:1,他引:6  
目前的船舶耐撞研究主要集中于双层舷侧结构,并已提出了一些有意义的耐撞性设计.军用船舶一般为单壳舷侧结构,这方面的耐撞结构研究开展得很少.本文针对军船,在研究常规舷侧结构碰撞性能的基础上,提出了一种基于内充泡沫塑料薄壁方管的单壳舷侧耐撞结构--FCT(Foam Cubie Tube)舷侧结构,它具有良好的吸能特性,是一种理想的能量吸收单元.作者对某型护卫舰的常规舷侧结构形式进行FCT耐撞设计,并对常规舷侧结构、IFP舷侧结构(另一种新式耐撞结构)及FCT舷侧结构进行了有限元仿真计算.经过比较 研究,证明FCT可以显著提高舰船的侧向抗撞能力.  相似文献   

8.
双层舷侧内外壁板之间十字隔板相对刚度对船体舷侧结构的碰撞性能影响很大.通过对船舶碰撞动力学特性的分析,合理地简化了计算模型,并引入了相对刚度的概念,采用改变十字隔板厚度来改变结构相对刚度的办法,进行了系列仿真试验.结果发现,十字隔板相对刚度会限制舷侧结构变形损伤模式,以至于显著地影响到整个舷侧结构的损伤变形、碰撞力及能量的吸收与转换,尤其是最为关键的舷侧内板的损伤与之关系密切.通过合理地调整十字隔板的相对刚度,在一定程度上可以实现对舷侧结构碰撞性能的优化设计,为船舶舷侧耐撞性设计提供依据.  相似文献   

9.
研究船舶的耐撞性对于保证船舶的安全航行具有重要的现实意义。本文分析目前所使用的双壳船舶的舷侧的碰撞模型,并给出其碰撞变形情况。然后设计3种耐撞性的船舶结构;阐述其在碰撞过程的变形能情况,最后通过碰撞力和吸能密度进行3种结构与原结构的对比分析。  相似文献   

10.
圆管式夹层板是一种新型船舶防护结构形式,通过在单层壳舷侧填充圆管式夹层以提高船体的耐撞性能。由于舷侧夹层结构在增加船体耐撞性的同时增加了船体质量,因此需要对圆管式夹层板进行尺度优化,在确保舷侧耐撞性增强的同时,有效控制船体质量增量。以船首与船侧相撞为例,综合考虑撞深、能量吸收、极限撞击速度和质量,提出一种耐撞性优化指标。基于正交试验设计、BP(Back Propagation)神经网络和遗传算法,得出最优的夹层板尺度,并利用有限元仿真软件MSC/Dytran对船舶碰撞进行数值仿真,从而确定最优的耐撞性舷侧结构设计。结果表明,优化后的舷侧圆管式夹层板结构在提高耐撞性能的同时能较好控制船体质量增量。研究成果在夹层板舷侧结构耐撞性能优化方面具有重要的作用,也为其他新型舷侧结构耐撞性能优化设计提供了参考。  相似文献   

11.
水面舰艇舷侧抗冲击防护结构形式初探   总被引:3,自引:1,他引:2  
利用大型有限元软件ANSYS/LS-DYNA和ABAQUS对水面舰艇舷侧抗冲击防护结构形式进行了探讨.分别对传统单壳舷侧结构;双层舷侧结构;双层舷侧结构,舷侧边舱灌满水;双层舷侧结构,舷侧边舱注入一半水;Y型舣层舷侧结构共5种结构的抗远场水下非接触爆炸性能进行了对比计算分析.比较分析了这5种舷侧结构舰体及内部结构的加速度、速度及应力响应数值.研究表明,在远场水下非接触爆炸条件下,双壳结构的抗冲击性能比起传统单壳舷侧结构有很大的改善,而Y型双层舷侧结构的抗冲击性能则明显优于这两种结构.  相似文献   

12.
撞击参数对双层舷侧结构碰撞响应的影响   总被引:8,自引:1,他引:7  
深入了解船体结构碰撞损伤特性和能量吸收机制是开展船舶耐撞性优化设计的前提。文章利用显式非线性有限元数值仿真技术对不同撞击条件下的双层舷侧结构碰撞响应进行了系列研究。研究结果表明:撞击位置、撞击角度和撞击速度的改变可能导致不同的碰撞损伤过程或结构损伤变形。  相似文献   

13.
李宝忠 《船舶工程》2015,37(S1):17-21
为研究船舶舷侧结构的碰撞损伤过程,采用非线性动态响应分析方法,使用ANASYS/LS-DYNA显式动力分析软件,对船艏和船舷垂直碰撞过程进行数值仿真,获得了碰撞力、能量吸收和结构损伤变形的时序结果。为了分析船舶舷侧结构耐撞性能,本文对比了常见油船、新型Y型和X型舷侧结构的仿真过程,结果表明新型舷侧结构在整体的耐撞性能上优于传统的舷侧结构,承载构件的不同也会对结构的耐撞性产生很大的差异。  相似文献   

14.
孙霞 《舰船科学技术》2012,34(11):46-51
在分析333TEU集装箱船的双壳舷侧结构耐撞性能的基础上,结合钢-泡沫结构自身的冲击性能,将钢-泡沫结构替代舷侧外板结构,得到新的舷侧耐撞结构形式。利用MSC.Dytran数值仿真软件,对双壳舷侧结构的耐撞性能进行综合分析。  相似文献   

15.
文章提出一种近似的解析方法评估单壳船侧结构的耐撞性。首先研究了单轴对称工字梁在横向载荷作用下结构从形成塑性铰到弦响应的力学过程,导出能量和变形的近似解析关系,然后考虑球鼻首和船侧结构的碰撞性将主要受撞区域舷侧板梁组合结构离散成为多个单轴对称工字梁,得到单壳舷侧结构碰撞过程能量吸收的近似公式,同时研究了球鼻形状以及不同碰撞位置对结构变形与能量吸收的影响。对散货船单壳舷侧结构的耐撞性用本文近似理论公式  相似文献   

16.
采用非线性动态响应分析方法,使用ANASYS/LS-DYNA显式动力分析软件,对船首和船舷垂直碰撞过程进行数值仿真,获得了碰撞力、能量吸收和结构损伤变形的时序结果。为了分析船舶舷侧结构耐撞性能,对比了常见油船、新型Y型和X型舷侧结构的仿真过程,结果表明新型舷侧结构在整体的耐撞性能上优于传统的舷侧结构,承载构件的不同也会对结构的耐撞性产生很大的差异。  相似文献   

17.
单壳船舷侧结构的碰撞分析   总被引:1,自引:1,他引:0  
给出一种计算船体结构基本构件——梁、板耐撞性的简化分析方法,并将该方法应用于单壳船舷侧结构的碰撞分析。讨论了球鼻首撞击作用下单壳船舷侧结构的总体破坏模式及其渐进破坏过程,提出了计及渐进破坏过程的碰撞损伤简化计算方法。实例计算结果表明:该简化分析方法能对单壳船舷侧结构的耐撞性作出合理的预报,可应用于船舶设计阶段船体结构耐撞性能的评估。  相似文献   

18.
基于折叠式夹层板船体结构耐撞性设计   总被引:3,自引:3,他引:0  
提高船体结构的耐撞性能是开展船舶碰撞与搁浅研究的主要目的,通过船体结构耐撞设计提高船舶的安全性,对常规船体结构进行优化来提高结构耐撞性能是有限的,设计新型高效的吸能单元是提高结构耐撞性能的有效途径m折叠式夹层板具有吸能好、比强高、刚度大等特性,是一种理想的能量吸收单元.引进特种吸能单元FSP设计出一种新式耐撞结构形式,分别应用于双壳、单壳舷侧结构,对其耐撞性能进行研究.通过数值仿真计算分析,证实FSP舷侧结构显著提高了单壳、双壳舷侧结构的抗撞能力,FSP结构是一种先进的耐撞结构形式.  相似文献   

19.
内河双壳油船舷侧结构耐撞性分析   总被引:1,自引:1,他引:0  
提出了内河双壳油船舷侧结构耐撞性能的简化分析方法,详细讨论了球鼻艏撞击作用下内河双壳油船舷侧结构的总体破坏模式及其渐进破坏过程.在考虑舷侧外壳板发生断裂破坏后的剩余抗撞能力的基础上,给出了双壳舷侧结构的撞击力―撞深曲线和吸收能量-撞深曲线,并与有限元仿真分析结果进行了比较.简化分析方法得到的结果与有限元分析基本上是一致的,这表明该方法能对内河双壳油船结构的耐撞性能做出合理预报,可用于这类油船耐撞性能的评估.  相似文献   

20.
船舶碰撞不仅会引起船体结构的损坏,而且会造成人员和财产的重大损失。对于内河油船或化学品船还可能会造成原油或化学品的泄漏,严重污染稀缺的水资源,威胁河流周围居民的正常生活。本文从提高内河双壳油船、化学品船耐撞性能的角度讨论了双壳结构形式对舷侧结构耐撞性能的影响。采用非线性有限元软件LS-DYNA,在满足双壳舷侧结构体积不变(重量不变)的情况下,分析并讨论了内外壳板厚度、结构布置形式(纵骨大小、纵骨数量)、双壳间距对受撞船舶舷侧结构能量吸收的影响。结果表明:适当增加外壳板厚度和减小纵骨截面的尺寸能提高船舶舷侧结构耐撞性能。同时针对传统双壳结构形式中内壳板所吸收能量占结构总吸能份额较低的特点,比较了内壳板采用波纹板结构(槽形舱壁结构)替代传统的加筋板结构对提高舷侧结构的抗撞能力的影响,收到较好的效果。通过对各种设计方案的计算对比,从中得出了一些具有工程应用价值的结论,为我国制定内河双壳油船碰撞评估指南提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号