共查询到20条相似文献,搜索用时 120 毫秒
1.
根据6条公路桥梁28条车道上的WIM系统实测车辆信息,分别生成了各车道上的随机车流类型过程.用随机过程理论分别计算得到各随机车流类型过程的集合均值、集合相关函数、时间均值、时间相关函数等随机特性参数.进一步对比分析,验证了所建立的随机车流类型过程的平稳性和各态历经性.结果表明:从实际公路上调查一定数量的车辆,其统计特性能够代表总体样本的车流信息,对车辆各种特征的统计结果具有代表性,可为公路桥梁随机车辆荷载模型的建立提供参考. 相似文献
2.
大跨度桥梁结构抖振响应的预测主要通过全桥气弹模型抖振响应试验和基于节段模型试验识别气动参数的理论计算2种方法。但由于试验中大气边界层湍流特性的模拟与实际存在一定的偏差,因此无法准确估计实际桥梁结构的抖振响应。为解决实际大跨度桥梁结构抖振响应预测的精度问题,在片条假设成立的条件下,通过数学推导提出了综合传递函数的概念。该函数是气动导纳函数和考虑了自激力的机械导纳函数的组合,其将湍流的脉动特性与由湍流引起的桥梁结构的抖振响应直接联系在一起,并基于此提出了一种预测大跨度桥梁抖振响应的直接计算方法。以坝陵河大跨度悬索桥为例,在两不同风场中分别进行全桥气弹模型风洞试验,通过模型抖振响应及模拟风场测量的试验结果识别两不同风场中的综合传递函数,发现二者结果几乎一致。理论及试验分析表明:对于展宽比较大的大跨度桥梁结构,综合传递函数仅与结构固有特性及参数有关,与风场特性无关;基于综合传递函数获得抖振响应的方法省略了传统分析方法中气动参数的识别及抖振力的计算,可通过测得实桥桥址处的湍流特性,利用风洞试验中识别的综合传递函数直接计算获得实桥准确的抖振响应。最后通过算例给出了综合传递函数的应用方法,为大跨度桥梁抖振响应的准确预测提供了方法,并可为节段模型试验直接预测实桥抖振响应提供思路。 相似文献
3.
4.
5.
大跨度桥梁抖振有限元分析 总被引:2,自引:0,他引:2
基于Scanlan教授的大跨度桥梁抖振分析理论,引入空间梁单元的位移插值函数及拉盖尔高斯积分法,提出了了一套抖振有限元分析方法,该法还可直接用振型函数来计算抖振内力。 相似文献
6.
7.
大跨度桥梁非线性颤振和抖振时程分析 总被引:1,自引:0,他引:1
在前人研究的基础上提出了统一的颤振和抖振分析方法。该方法以非线性有限元的直接积分法为基础,在研究中具体解决了随机风速场的模拟、耦合自激力的时域计算和统一的颤抖振时程分析流程等关键问题,考虑了结构的几何非线性和有效攻角效应。本文的研究纠正了过去时程分析方法不能同时处理颤振和抖振的理论缺陷。本文还通过所编制的软件的计算实例验证了方法的正确性和可行性。 相似文献
8.
对某一斜拉桥进行最大双悬臂和最大单悬臂的空间有限元分析,采用时域分析方法,计算不同阻尼工况下,桥梁在不同攻角风作用下的抖振响应,通过频谱分析,讨论最不利施工状态下桥梁抖振响应对施工人员安全的影响。研究表明:抖振作用下的Diekemann舒适度指标值较大,对施工人员安全和桥梁施工质量均有影响,应采用一定的控制措施。 相似文献
9.
10.
11.
斜拉桥在施工状态时,柔性大、振动频率较低,在紊流风的作用下梁端会产生较大的竖向抖振位移,而塔的摇头运动会在塔根引起较大的纵向弯矩。该文以某三塔斜拉桥为例,根据大跨度桥梁抖振响应有限元理论,分析和比较了5种不同的风缆设置方案以及设置临时支撑桩方案的抑振效果,并提出了一种有效的抑振措施。 相似文献
12.
大跨度斜拉桥在施工双悬臂状态下受紊流风作用时,桥面将产生较大的抖振振幅,而紊流风的方位角对桥梁的抖振响应有较大影响。笔者从理论上分析了斜交风作用下桥梁抖振响应的计算方法,并结合实际算例分析了不同方位角下桥梁的抖振响应值。 相似文献
13.
连续模型和随机振动模论是计算桥梁风激抖振响应的常用方法,满足一定的条件时,还可以将风荷载简化为独立集中力模型,仍可以提供合理的响应计算结果,并且计算更加快速简单。 相似文献
14.
15.
面向特异风环境桥梁风振实时推演,开展了雷暴风作用下大跨度桥梁抖振响应智能预测研究。以苏通大桥实测数据为基础,分析了风场参数与主梁抖振响应之间的相关性,确定了桥梁雷暴风效应的主要关联参数。基于前馈神经网络(FNN)、卷积神经网络(CNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)等典型神经网络模型,以主要风场关联参数及历史抖振响应作为输入,开展了桥梁抖振响应预测网络架构与模型训练,并对比分析了4种模型的预测效果。研究结果表明:雷暴风作用下大跨度桥梁的抖振响应主要与平均风速、平均风向、脉动风速均方差、紊流积分尺度等风场参数密切相关;待预测的桥梁抖振响应与历史风场及桥梁状态参数有关,需考虑二者的记忆效应;FNN与CNN未能较好地表征该记忆效应,故预测结果与实测值仅趋势相近,预测误差相对较大;GRU与LSTM的预测效果总体较好,GRU在雷暴风风速较大时的预测效果最优;LSTM在高风速下的预测效果略低于GRU,但在风速较低时的抖振预测精度最高,即具有更强的泛化能力。研究结果可为雷暴风易发区大跨度桥梁的安全运维提供借鉴与参考。 相似文献
16.
为了对大跨度密频斜拉桥抖振进行控制,基于虚功原理推导出以广义相对位移为未知量的多自由度多模态耦合抖振频域控制方程,总结文献中以位移为最优目标的调谐阻尼器(TMD)最优参数解析解,改进传统双频TMD(DTMD)模型,提出衡量DTMD自身冲程大小的评价标准和采用频响函数峰值分布情况选取控制频宽,对比研究各种参数优化方案和DTMD频率间距对抖振减振效果的影响。研究结果表明,密频斜拉桥抖振响应谱密度峰值的分布特性和一般斜拉桥有明显不同,响应谱在各阶振型频率之间的鞍谷能量不可忽视,各阶振型对主梁不同位置的抖振响应贡献具有差异性。结构阻尼比越小,单个DTMD(SDTMD)减振效果越好,SDTMD控制会出现频响函数能量频移现象。多模态多重调谐质量阻尼器(MDTMD)控制要优于单模态MDTMD控制,改进的DTMD能够在2个方向同时达到良好的减振效果,比传统的DTMD更具优势。分析DTMD频率间距按照均匀分布、二次抛物线分布和频响函数积分等面积分布计算的抖振响应控制效果表明,合理的频率间距能够在相同条件下获得更好的减振效果。单模态和多模态控制得出的结果都表明,Krenk解在综合减振效果上要优于Den Hartog解,采用公路桥梁抗风设计规范(JTG/T 3360-01-2018)中Den Hartog解进行DTMD参数设计时,应增加DTMD的设计阻尼比,且增幅不少于15%。 相似文献
17.
18.
钢桁梁是双层桥面悬索桥及峡谷地区悬索桥常用的加劲梁形式,该类加劲梁构件众多、阻风面积大,在脉动风荷载作用下的抖振响应非常显著。采用Davenport抖振频域方法对某钢桁梁悬索桥的顺风向、横风向及扭转方向的抖振响应进行分析。抖振有限元频域分析表明:抖振位移主要由加劲梁各方向的1阶振动模态控制,高阶模态的参与效应可以忽略;对于抖振加速度,高阶模态有较大贡献。进一步研究了定常及非定常自激气动力形式对气动阻尼的影响,结果表明准定常自激力描述竖向及侧向模态的气动阻尼具有足够的精度,但描述扭转模态的气动阻尼还存在很大的近似性。 相似文献
19.
为了掌握山区窄悬索桥的抗风性能,以某山区大跨度加劲梁窄悬索桥为研究对象,采用谐波合成与FFT转换技术相结合的方法,构建模拟了山区窄悬索桥三维脉动风场,并基于ANSYS大型有限元分析软件的APDL语言,建立山区大跨度窄悬索桥风振响应有限元模型,分析大跨度窄悬索桥结构抖振响应特性。结果表明:窄悬索桥的抖振位移响应时程表现为明显的限幅振动,可能会引发局部构件疲劳破坏。该加劲梁窄悬索桥的横向抖振位移上限值为16.4 cm,竖向位移振动上限值为8.8 cm,其横向抗弯刚度更小,出现横向弯曲振型频率会更低,需要采取一定的抗风措施加强横向刚度。 相似文献
20.
桥塔作为一种轻柔结构,风荷载是作用在它上面的主要侧向荷载.在仅考虑脉动风效应的情况下,对该桥桥塔在施工阶段的塔顶横桥向和顺桥向抖振位移进行了计算分析.结果表明,在风荷载作用下该桥塔横桥向抖振响应较为严重,需对独塔施工阶段的横桥向抖振响应进行控制. 相似文献