首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
For vehicle rollover control systems, an accurate and predictive rollover index is necessary for a precise rollover threat detection and rollover prevention. In this paper, the contour line of load transfer ratio (CL-LTR) and the CL-LTR-based vehicle rollover index (CLRI) are proposed, describing LTR threshold and LTR change rate precisely, providing an accurate prediction of vehicle rollover threat. In detail, the CL-LTR is proposed via the roll dynamics phase plane analysis, and its analytical solution of one-degree-of-freedom vehicle roll model and extension for full vehicle are derived. Moreover, the predictive CLRI is proposed and evaluated via vehicle dynamics study. The results demonstrate that vehicle rollover threat is predicted accurately based on the CLRI, which shows benefits for the vehicle rollover prediction and stability control.  相似文献   

2.
This paper focuses on a combination of a reliability-based approach and an empirical modelling approach for rollover risk assessment of heavy vehicles. A reliability-based warning system is developed to alert the driver to a potential rollover before entering into a bend. The idea behind the proposed methodology is to estimate the rollover risk by the probability that the vehicle load transfer ratio (LTR) exceeds a critical threshold. Accordingly, a so-called reliability index may be used as a measure to assess the vehicle safe functioning. In the reliability method, computing the maximum of LTR requires to predict the vehicle dynamics over the bend which can be in some cases an intractable problem or time-consuming. With the aim of improving the reliability computation time, an empirical model is developed to substitute the vehicle dynamics and rollover models. This is done by using the SVM (Support Vector Machines) algorithm. The preliminary obtained results demonstrate the effectiveness of the proposed approach.  相似文献   

3.
A Rollover Index combined with the grey system theory, called a Grey Rollover Index (GRI), is proposed to assess the rollover threat for articulated vehicles with a tractor–semitrailer combination. This index can predict future trends of vehicle dynamics based on current vehicle motion; thus, it is suitable for vehicle-rollover detection. Two difficulties are encountered when applying the GRI for rollover detection. The first difficulty is effectively predicting the rollover threat of the vehicles, and the second difficulty is achieving a definite definition of the real rollover timing of a vehicle. The following methods are used to resolve these problems. First, a nonlinear mathematical model is constructed to accurately describe the vehicle dynamics of articulated vehicles. This model is combined with the GRI to predict rollover propensity. Finally, TruckSim? software is used to determine the real rollover timing and facilitate the accurate supply of information to the rollover detection system through the GRI. This index is used to verify the simulation based on the common manoeuvres that cause rollover accidents to reduce the occurrence of false signals and effectively increase the efficiency of the rollover detection system.  相似文献   

4.
Design of a rollover index-based vehicle stability control scheme   总被引:1,自引:0,他引:1  
This paper presents a rollover index (RI)-based vehicle stability control (VSC) scheme. A rollover index, which indicates an impending rollover, is developed by a roll dynamics phase plane analysis. A model-based roll estimator is designed to estimate the roll angle and roll rate of the vehicle body with lateral acceleration, yaw rate, steering angle and vehicle velocity measurements. The rollover index is computed using an estimated roll angle, estimated roll rate, measured lateral acceleration and time-to-wheel lift. A differential braking control law is designed using a direct yaw control method. The VSC threshold is determined from the rollover index. The effectiveness of the RI, the performance of the estimator and the control scheme are investigated via simulations using a validated vehicle simulator. It is shown that the proposed RI can be a good measure of the danger of rollover and the proposed RI-based VSC scheme can reduce the risk of a rollover.  相似文献   

5.
The major challenges for rollover detection are the accurate modelling of vehicle dynamics and the real-time estimation of the varied parameters. To circumvent the dependence on vehicle parameters, a novel rollover detection method based on the pulsed braking excitation is proposed. With the lateral load transfer ratio (LTR), the relationship between rollover risks and non-driven wheel rotational dynamics is deduced, which is the basis to apply braking excitation on wheels. The lateral acceleration is adopted as the first criterion to activate the rollover detection. Once the pulsed braking is applied to the non-driven wheels, the braking pressure and wheel angular speeds are measured to estimate the LTR on the non-driven axle. In case of emergency, the differential braking-based anti-rollover is implemented. Experiments were conducted on a Hardware-in-Loop bench. The results show that, the pulsed braking can be activated timely, and the LTR on the non-driven axle is estimated accurately. With the anti-rollover control, the roll stability is improved considerably.  相似文献   

6.
This paper presents the results of a comprehensive study on heavy-duty vehicle (HDV) roll stability improvement technology. The proposed rollover threat warning system uses the real-time dynamic model-based time-to-rollover (TTR) metric as a basis for online rollover detections. Its feasibility for implementation in a HDV rollover threat detection system is demonstrated through vehicle dynamic simulation studies. The research on the development of a rollover threat detection system is further enhanced in combination with an active roll control system using active suspension mechanism to improve heavy-duty trucks’ roll stability both in the static cornering and in emergency maneuvers. It has been demonstrated that the roll stability of typical heavy-duty trucks has been largely improved by the proposed active safety monitoring and control system.  相似文献   

7.
This article describes a method of vehicle dynamics estimation for impending rollover detection. This method is evaluated via a professional vehicle dynamics software and then through experimental results using a real test vehicle equipped with an inertial measurement unit. The vehicle dynamic states are estimated in the presence of the road bank angle (as a disturbance in the vehicle model) using a robust observer. The estimated roll angle and roll rate are used to compute the rollover index which is based on the prediction of the lateral load transfer. In order to anticipate the rollover detection, a new method is proposed in order to compute the time-to-rollover using the load transfer ratio. The used nonlinear model is deduced from the vehicle lateral dynamics and is represented by a Takagi–Sugeno (TS) fuzzy model. This representation is used in order to take into account the nonlinearities of lateral cornering forces. The proposed TS observer is designed with unmeasurable premise variables in order to consider the non-availability of the slip angles measurement. Simulation results show that the proposed observer and rollover detection method exhibit good efficiency.  相似文献   

8.
Vehicle rollover is a serious traffic accident. In order to accurately evaluate the possibility of untripped and some special tripped vehicle rollovers, and to prevent vehicle rollover under unpredictable variations of parameters and harsh driving conditions, a new rollover index and an anti-roll control strategy are proposed in this paper. Taking deflections of steering and suspension induced by the roll at the axles into consideration, a six degrees of freedom dynamic model is established, including lateral, yaw, roll, and vertical motions of sprung and unsprung masses. From the vehicle dynamics theory, a new rollover index is developed to predict vehicle rollover risk under both untripped and special tripped situations. This new rollover index is validated by Carsim simulations. In addition, an H-infinity controller with electro hydraulic brake system is optimised by genetic algorithm to improve the anti-rollover performance of the vehicle. The stability and robustness of the active rollover prevention control system are analysed by some numerical simulations. The results show that the control system can improve the critical speed of vehicle rollover obviously, and has a good robustness for variations in the number of passengers and longitude position of the centre of gravity.  相似文献   

9.
In this paper vehicle path-following in the presence of rollover risk is investigated. Vehicles with high centre of mass are prone to roll instability. Untripped rollover risk is increased in high centre of gravity vehicles and high-friction road condition. Researches introduce strategies to handle the short-duration rollover condition. In these researches, however, trajectory tracking is affected and not thoroughly investigated. This paper puts stress on tracking error from rollover prevention. A lower level model predictive front steering controller is adopted to deal with rollover and tracking error as a priority sequence. A brake control is included in lower level controller which directly obeys an upper level controller (ULC) command. The ULC manages vehicle speed regarding primarily tracking error. Simulation results show that the proposed control framework maintains roll stability while tracking error is confined to predefined error limit.  相似文献   

10.
The longitudinal location of a vehicle’s center of gravity (CG) is used as an important parameter for vehicle safety control systems, and can change considerably according to various driving conditions. Accordingly, for the better performance of vehicle safety control systems, it is essential to obtain the accurate CG location. However, it is generally difficult to acquire the value of this parameter directly through sensors due to cost reasons. In this study, a practical algorithm for estimating vehicle’s longitudinal CG location in real time is proposed. This algorithm is derived based only on longitudinal motion of the vehicle, excluding excessive lateral, yaw and roll movements of the vehicle. Moreover, the proposed algorithm has main differences from previous studies in that it does not require information such as vehicle mass, vehicle moments of inertia, road grade or tire-road surface friction, which are difficult to acquire. In the proposed algorithm, the relationship between the ratio of rear-to-front tire longitudinal force and the corresponding wheel slips are used to determine the CG location. To demonstrate a practical use of the proposed algorithm, the ideal brake force distribution is tested. The proposed CG estimation algorithm and its practical use are verified via simulations and experiments using a test vehicle equipped with electro-mechanical brakes in the rear wheels. It is shown that the estimated CG locations are close to the actual ones, and that the deceleration can be maximized by the ideal brake force distribution.  相似文献   

11.
Vehicle safety is a major concerns for researchers, governments and vehicle manufacturers, and therefore a special attention is paid to it. Particularly, rollover is one of the types of accidents where researchers have focused due to the gravity of injuries and the social impact it generates. One of the parameters that define bus lateral behaviour is the acceleration threshold limit, which is defined as the lateral acceleration from which the rollover process begins to take place. This parameter can be obtained by means of a lateral rollover platform test or estimated by means of mathematical models. In this paper, the differences between these methods are deeply analysed, and a new mathematical model is proposed to estimate the acceleration threshold limit in the lateral rollover test. The proposed model simulates the lateral rollover test, and, for the first time, it includes the effect of a variable position of the centre of gravity. Finally, the maximum speed at which the bus can travel in a bend without rolling over is computed.  相似文献   

12.
A vehicle rollover is a critical accident that could have many causes. This paper describes a novel vision-based system for measuring vehicle roof deformation due to a rollover accident. A vision-based measurement system offers an overall view of structural deformation simply at low cost. Our measurement system was constructed using a Kinect camera from Microsoft, a battery, and a remote-controlled recording computer. Color images and distance maps can be obtained using two sensors embedded in the Kinect along with customized software, and the distance from the camera lens to a specific object can be calculated with a simple equation. To test our proposed approach, actual vehicle rollover experiments were conducted and the resulting roof deformations were compared to those indicated by our system. Moreover, cross-sectional image of Apillar was analyzed to calculate bending moment of inertia. From the research results, it was able to show that deformation errors were within 13 mm, and roof deformation was correlated with vehicle type, or vehicle curb weight.  相似文献   

13.
基于制动与悬架系统的车辆主动侧翻控制的研究   总被引:3,自引:0,他引:3  
为提高车辆抗侧翻能力,建立了10自由度整车侧翻动力学模型,应用车辆动力学和轮胎力耦合特性,提出了一种基于差动制动和半主动悬架协同工作的车辆主动抗侧翻控制策略。通过对制动力矩的差动调节和半主动悬架阻尼力的适时匹配,实现对车辆侧翻的有效控制。根据子系统运动特性,设计了制动系统基于滑移率的积分滑模控制器和悬架系统灰模糊控制器。分别对制动、悬架控制及综合控制进行的鱼钩试验仿真结果表明,综合控制策略可有效降低危险时域车辆的侧倾角,相对于单一系统控制进一步提高了车辆抗侧翻能力。  相似文献   

14.
对比分析了国内外车辆侧翻稳定性相关的标准法规的基本情况。研究了车辆发生侧翻的类型和机理,基于侧向加速度判断车辆侧翻状态的方法,通过整车道路试验对比了正弦停滞试验和鱼钩试验诱导车辆发生侧翻的效果,初步探讨了多用途乘用车侧翻稳定性动态测试方法和评价指标,为国内车辆侧翻稳定系统的开发和测评标准的制定提供了参考。  相似文献   

15.
This paper presents a method to design a rollover prevention controller for vehicle systems. The vehicle rollover can be prevented by a controller that minimises the lateral acceleration and the roll angle. Rollover prevention capability can be enhanced if the controlled vehicle system is robust to the variation of the height of the centre of gravity and the speed of the vehicle. For this purpose, a robust controller is designed with linear matrix inequality-based trajectory sensitivity minimisation. Differential braking and active suspension are adopted as actuators that generate yaw and roll moments, respectively. The newly proposed method is shown to be effective in preventing rollover by the simulation on a non-linear multibody dynamic simulation software, CarSim®.  相似文献   

16.
A rigid body model to represent a side impact crash is constructed using five degrees-of-freedom (dof) for the vehicle and three dof for each occupant in the vehicle. Nonlinear stiffness and damping elements and the presence of physical gaps between several components make the model highly nonlinear. The model is validated using experimental crash test data from a National Highway Traffic Safety Administration (NHTSA) database. To simplify the parameter identification process and reduce the number of parameters to be identified at each stage, a two-step process is adopted in which the vehicle is first assumed to be unaffected by the presence of the occupants, and its model parameters are identified. Subsequently, the parameters in the occupant models are identified.

The active set method with a performance index that includes both the L2 and L norms is used for parameter identification. A challenge is posed by the fact that the optimisation problem involved is non-convex. To overcome this challenge, a large set of random initial values of parameter estimates is generated and the optimisation method is applied with all these initial conditions. The values of parameters that provide the minimal performance index from the entire set of initial conditions are then chosen as the best parameter values. The optimal parameters values thus identified are shown to significantly improve the match between the model responses and the experimentally measured sensor signals from the NHTSA crash test.  相似文献   

17.
Vehicle rollovers may occur under steering-only maneuvers because of roll or yaw instability. In this paper, the modified fishhook and the sine maneuvers are used to investigate a vehicle's rollover resistance capability through simulation. A 9-degrees of freedom (DOF) vehicle model is first developed for the investigation. The vehicle model includes the roll, yaw, pitch, and bounce modes and passive independent suspensions. It is verified with the existing 3-DOF roll-yaw model. A rollover critical factor (RCF) quantifying a vehicle's rollover resistance capability is then constructed based on the static stability factor (SSF) and taking into account the influence of other key dynamic factors.

Simulation results show that the vehicle with certain parameters will rollover during the fishhook maneuver because of roll instability; however, the vehicle with increased suspension stiffness, which does not rollover during the fishhook maneuver, may exceed its rollover resistance limit because of yaw instability during the sine maneuver. Typically, rollover in the sine maneuver happens after several cycles.

It has been found that the proposed RCF well quantifies the rollover resistance capability of a vehicle for the two specified maneuvers. In general, the larger the RCF, the more kinetically stable is a vehicle. A vehicle becomes unstable when its RCF is less than zero. Detailed discussion on the effects of key vehicle system parameters and drive conditions on the RCF in the fishhook and the sine maneuver is presented in Part II of this study.  相似文献   

18.
This paper presents the application of a nominal control design algorithm for rollover prevention of heavy articulated vehicles with active anti-roll-bar control. This proposed methodology is based on an extension of linear quadratic regulator control for ‘state derivative-induced (control coupled) output regulation’ problems. For heavy articulated vehicles with multiple axles, a performance index with multiple rollover indices is proposed. The proposed methodology allows us to compare the usefulness of various control configurations (i.e. actuators at different axles of the vehicle) based on the interaction of this control configuration with vehicle dynamics. Application of this methodology to a specific heavy articulated vehicle with a tractor semi-trailer shows that a single active anti-roll-bar system at the trailer unit gives better performance than multiple-axle actuators at tractor and trailer together with the single lane change manoeuvre as the external disturbance. Thus, the proposed methodology of this paper not only highlights the importance of the interactions between control and vehicle dynamics in rollover prevention problems but, in fact, proposes a novel technique to exploit the benefits of these interactions judiciously.  相似文献   

19.
The modelling and development of a general criterion for the prediction of rollover threshold is the main purpose of this work. Vehicle dynamics models after the wheels lift-off and when the vehicle moves on the two wheels are derived and the governing equations are used to develop the rollover threshold. These models include the properties of the suspension and steering systems. In order to study the stability of motion, the steady-state solutions of the equations of motion are carried out. Based on the stability analyses, a new relation is obtained for the rollover threshold in terms of measurable response parameters. The presented criterion predicts the best time for the prevention of the vehicle rollover by applying a correcting moment. It is shown that the introduced threshold of vehicle rollover is a proper state of vehicle motion that is best for stabilising the vehicle with a low energy requirement.  相似文献   

20.
汽车侧翻和滚翻事故建模研究   总被引:5,自引:0,他引:5  
祝军  李一兵 《汽车工程》2006,28(3):254-258
分析汽车在侧翻和滚翻过程中的受力状态和轮胎或车身与路面的相互作用方式,建立汽车侧翻和滚翻的运动学和动力学模型,揭示汽车临界侧翻碰撞力与持续作用时间等参数的关系,推导侧翻车辆侧向速度的范围,确定滚筒模型中关键参数的选取方法。事故案例表明模型在实际应用中效果良好、定量准确、直观性强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号