首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents eight empirical models of monthly ridership for seven U.S. Transit Authorities. Within the framework of these models, the impacts upon monthly ridership from changes in the real fare and gasoline prices are examined. Important findings are: (1) the elasticities of monthly transit ridership with respect to the real fare are negative and inelastic, ranging from 0.042 to 0.62; and (2) the elasticities of monthly transit ridership with respect to the real gasoline price are positive and inelastic, ranging from 0.08 to 0.80. Such results have important policy implications for decisions based on the relationships of price, revenue, and ridership; and for assessing the impacts of changing gasoline prices upon urban modal choice.  相似文献   

2.
Transit fares are an effective tool for demand management. Transit agencies can raise revenue or relieve overcrowding via fare increases, but they are always confronted with the possibility of heavy ridership losses. Therefore, the outcome of fare changes should be evaluated before implementation. In this work, a methodology was formulated based on elasticity and exhaustive transit card data, and a network approach was proposed to assess the influence of distance-based fare increases on ridership and revenue. The approach was applied to a fare change plan for Beijing Metro. The price elasticities of demand for Beijing Metro at various fare levels and trip distances were tabulated from a stated preference survey. Trip data recorded by an automatic fare collection system was used alongside the topology of the Beijing Metro system to calculate the shortest path lengths between all station pairs, the origin–destination matrix, and trip lengths. Finally, three fare increase alternatives (high, medium, and low) were evaluated in terms of their impact on ridership and revenue. The results demonstrated that smart card data have great potential with regard to fare change evaluation. According to smart card data for a large transit network, the statistical frequency of trip lengths is more highly concentrated than that of the shortest path length. Moreover, the majority of the total trips have a length of around 15 km, and these are the most sensitive to fare increases. Specific attention should be paid to this characteristic when developing fare change plans to manage demand or raise revenue.  相似文献   

3.
This paper investigates the effects of price and service changes on transit ridership. The concept of elasticity is introduced and the traditional methods for estimating elasticities are discussed. In this paper an extra dimension is added by investigating short and long term elasticities. Time series analysis, developed by Box and Jenkins is chosen for the analysis. The Box and Jenkins methodology is applied to a monthly time series of average weekday ridership on the Chicago Transit Authority (CTA) rail system. Four categories of explanatory variables are investigated: fare on the CTA rail system, service provided on the CTA rail system, cost of car trips and weather effects. The effects of gas prices and rail service were found to be significant; however the results indicate a twelve month delay before service changes influence ridership. The effect of transit fares was found to be insignificant, indicating that both the short and long term fare elasticities are zero.  相似文献   

4.
Public subsidy of transit services has increased dramatically in recent years, with little effect on overall ridership. Quite obviously, a clear understanding of the factors influencing transit ridership is central to decisions on investments in and the pricing and deployment of transit services. Yet the literature about the causes of transit use is quite spotty; most previous aggregate analyses of transit ridership have examined just one or a few systems, have not included many of the external, control variables thought to influence transit use, and have not addressed the simultaneous relationship between transit service supply and consumption. This study addresses each of these shortcomings by (1) conducting a cross-sectional analysis of transit use in 265 US urbanized areas, (2) testing dozens of variables measuring regional geography, metropolitan economy, population characteristics, auto/highway system characteristics, and transit system characteristics, and (3) constructing two-stage simultaneous equation regression models to account for simultaneity between transit service supply and consumption. We find that most of the variation in transit ridership among urbanized areas – in both absolute and relative terms – can be explained by factors outside of the control of public transit systems: (1) regional geography (specifically, area of urbanization, population, population density, and regional location in the US), (2) metropolitan economy (specifically, personal/household income), (3) population characteristics (specifically, the percent college students, recent immigrants, and Democratic voters in the population), and (4) auto/highway system characteristics (specifically, the percent carless households and non-transit/non-SOV trips, including commuting via carpools, walking, biking, etc.). While these external factors clearly go a long way toward determining the overall level of transit use in an urbanized area, we find that transit policies do make a significant difference. The observed range in both fares and service frequency in our sample could account for at least a doubling (or halving) of transit use in a given urbanized area. Controlling for the fact that public transit use is strongly correlated with urbanized area size, about 26% of the observed variance in per capita transit patronage across US urbanized areas is explained in the models presented here by service frequency and fare levels. The observed influence of these two factors is consistent with both the literature and intuition: frequent service draws passengers, and high fares drive them away.  相似文献   

5.
This study investigates the impacts of transit improvement strategies on bus emissions along a busy corridor in Montreal, Canada. The local transit provider, Société de Transport de Montréal, has implemented a number of strategies which include the use of smart cards, limited-stop (express bus) service, and reserved bus lanes along this corridor. Using data collected on-board for instantaneous speeds and stop-level ridership, we estimated bus emissions of greenhouse gases and other pollutants at three levels: road segment, bus-stop, and per passenger. A regression of segment-level emissions against a number of explanatory variables reveals that reserved bus lanes and express bus service reduce emissions significantly. On the other hand, smart card use reduces idling emissions compared to other fare payment methods. Our findings are of most relevance for transit planners who are seeking to implement different strategies to reduce emissions and improve transit performance.  相似文献   

6.
Fare and service frequency significantly affect transit users’ willingness to ride, as well as the supplier's revenue and operating costs. To stimulate demand and increase productivity, it is desirable to reduce the transfer time from one route to another via efficient service coordination, such as timed transfer. Since demand varies both temporally and spatially, it may not be cost-effective to synchronize vehicle arrivals on all connecting routes at a terminal. In this paper, we develop a schedule coordination model to optimize fare and headway considering demand elasticity. The headway of each route is treated as an integer-multiple of a base common headway. A discounted (reduced) fare is applied as an incentive to encourage ridership and, thus, stimulate public transit usage. The objective of the proposed coordination model is used to maximize the total profit subject to the service constraint. A numerical example is given to demonstrate the applicability of the proposed model. The results show that the optimized fare and headway may be carefully applied to yield the maximum profit. The relationship between the decision variables and model parameters is explored in the sensitivity analysis.  相似文献   

7.
This paper summarizes and updates the findings from an earlier study by the same authors of transit systems in Houston (all bus) and San Diego (bus and light rail). Both systems achieved unusually large increases in transit ridership during a period in which most transit systems in other metropolitan areas were experiencing large losses. Based on ridership models estimated using cross section and time series data, the paper quantifies the relative contributions of policy variables and factors beyond the control of transit operators on ridership growth. It is found that large ridership increases in both areas are caused principally by large service increases and fare reductions, as well as metropolitan employment and population growth. In addition, the paper provides careful estimates of total and operating costs per passenger boarding and per passenger mile for Houston's bus operator and San Diego's bus and light rail operators. These estimates suggest that the bus systems are more cost-effective than the light rail system on the basis of total costs. Finally, the paper carries out a series of policy simulations to analyze the effects of transit funding levels and metropolitan development patterns on transit ridership and farebox recovery ratio.  相似文献   

8.
Experiences with time‐of‐day transit pricing in the U.S. are reviewed in this article and compared to those in other countries. Emphasis is placed on examining ridership, financial and efficiency impacts associated with time‐of‐day pricing, along with highlighting innovative approaches to implementing fare differentials. American time‐of‐day fare structures have been about evenly split between off‐peak discounts, peak‐period surcharges, and programmes involving differential rates of fare increases between peak and off‐peak hours. Although most American operators introduced time‐of‐day differentials to encourage ridership shifts to the off‐peak period, available evidence suggests that they have been only marginally successful in doing so. Off‐peak users were generally found to be far more fare‐sensitive to discounts than peak passengers were to surcharges. Only in a handful of American cities were significant efficiency and financial benefits from time‐of‐day pricing recorded, though in those few places, they tended to be substantial. The most successful American programmes have been those which collect fares on the basis of bus runs and direction of trips (rather than the exact time) and which aggressively market their programmes under the aegis of ‘bargain fares’. It is concluded that useful lessons can be gained by sharing policy insights from experiments with differential transit pricing in both the US and elsewhere.  相似文献   

9.
This paper studies public transport demand by estimating a system of equations for multimodal transit systems where different modes may act competitively or cooperatively. Using data from Athens, Greece, we explicitly correct for higher-order serial correlation in the error terms and investigate two, largely overlooked, questions in the transit literature; first, whether a varying fare structure in a multimodal transit system affects demand and, second, what the determinants of ticket versus travelcard sales may be. Model estimation results suggest that the effect of fare type on ridership levels in a multimodal system varies by mode and by relative ticket to travelcard prices. Further, regardless of competition or cooperation between modes, fare increases will have limited effects on ridership, but the magnitude of these effects does depend on the relative ticket to travelcard prices. Finally, incorrectly assuming serial independence for the error terms during model estimation could yield upward or downward biased parameters and hence result in incorrect inferences and policy recommendations.  相似文献   

10.
In this paper we present a route-level patronage model that incorporates transit demand, supply and inter-route effects in a simultaneous system. The model is estimated at the route-segment level by time of day and direction. The results show strong simultaneity among transit demand, supply and competing routes. Transit ridership is affected by the level of service, which in turn is determined by current demand and ridership in the previous year. The model demonstrates that a service improvement has a twofold impact on ridership; it increases ridership on the route with service changes, but it also reduces the ridership on competing routes so that the net ridership change is small. The model is thus useful for both system-level analysis and route-level service planning.  相似文献   

11.
In the past few years, numerous mobile applications have made it possible for public transit passengers to find routes and/or learn about the expected arrival time of their transit vehicles. Though these services are widely used, their impact on overall transit ridership remains unclear. The objective of this research is to assess the effect of real-time information provided via web-enabled and mobile devices on public transit ridership. An empirical evaluation is conducted for New York City, which is the setting of a natural experiment in which a real-time bus tracking system was gradually launched on a borough-by-borough basis beginning in 2011. Panel regression techniques are used to evaluate bus ridership over a three year period, while controlling for changes in transit service, fares, local socioeconomic conditions, weather, and other factors. A fixed effects model of average weekday unlinked bus trips per month reveals an increase of approximately 118 trips per route per weekday (median increase of 1.7% of weekday route-level ridership) attributable to providing real-time information. Further refinement of the fixed effects model suggests that this ridership increase may only be occurring on larger routes; specifically, the largest quartile of routes defined by revenue miles of service realized approximately 340 additional trips per route per weekday (median increase of 2.3% per route). Although the increase in weekday route-level ridership may appear modest, on aggregate these increases exert a substantial positive effect on farebox revenue. The implications of this research are critical to decision-makers at the country’s transit operators who face pressure to increase ridership under limited budgets, particularly as they seek to prioritize investments in infrastructure, service offerings, and new technologies.  相似文献   

12.
Between 1990 and 2000, U.S. transit agencies added service and increased ridership, but the ridership increase failed to keep pace with the service increase. The result was a decline in service effectiveness (or productivity). This marks the continuation of a long-running and often-studied trend. The scholarly literature attributes this phenomenon, at least in part, to transit agency decisions to decentralize their service rather than focus on serving the traditional CBD market. Many scholars argue that a decentralized service orientation is both ineffective and inefficient because it attracts few riders and requires large per-rider subsidies. This research tests whether a non-traditional, decentralized service orientation, called multidestination service, results in reduced service productivity. Contrary to what the literature suggests, we find that MSAs whose transit agencies pursued a multidestination service orientation did not experience lower productivity. These results indicate that policies that have encouraged the growth of decentralized transit services have not necessarily been detrimental to the industry.
Gregory L. ThompsonEmail:
  相似文献   

13.
Sustainable land use planning and advanced public transport system are believed to be effective solutions to traffic congestion. To this end, it is important to reveal the relationship between transit ridership and land use. However, current Direct Ridership Models only focus on the relationship between single station's boarding volume and the corresponding catchment area land use. This paper analyzed the ridership distribution between transit stations by considering the land use difference between catchment areas. Land use difference was calculated from point of interest (POI) data extracted from an electronic map of Beijing; transit trip distribution volume was obtained from ‘automatic fare collection’ facility. After data specification, a transit ridership distribution model was proposed and calibrated. The calibration results suggest that land use difference has a directly proportional correlation with transit ridership distribution. The research findings build a bridge between detailed urban form and public transport, which is of significance for the further research of sustainable urban planning. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A mathematical model is developed to optimize social and fiscal sustainable operation of a feeder bus system considering realistic network and heterogeneous demand. The objective total profit is a nonlinear, mixed integer function, which is maximized by optimizing the number of stops, headway, and fare. The stops are located which maximize the ridership. The demand elasticity for the bus service is dependent on passengers' access distance, wait time, in‐vehicle time, and fare. An optimization algorithm is developed to search for the optimal solution that maximizes the profit. The modeling approach is applied to planning a bus transit system within Woodbridge, New Jersey. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Unlimited Access   总被引:1,自引:0,他引:1  
Brown  Jeffrey  Hess  Daniel Baldwin  Shoup  Donald 《Transportation》2001,28(3):233-267
Universities and public transit agencies have together invented an arrangement – called Unlimited Access – that provides fare-free transit service for over 825,000 people. The university typically pays the transit agency an annual lump sum based on expected student ridership, and students simply show their university identification to board the bus. This paper reports the results of a survey of Unlimited Access programs at 35 universities. University officials report that Unlimited Access reduces parking demand, increases students' access to the campus, helps to recruit and retain students, and reduces the cost of attending college. Transit agencies report that Unlimited Access increases ridership, fills empty seats, improves transit service, and reduces the operating cost per rider. Increases in student transit ridership ranged from 71 percent to 200 percent during the first year of Unlimited Access, and growth in subsequent years ranged from 2 percent to 10 percent per year. The universities' average cost for Unlimited Access is $30 per student per year.  相似文献   

16.
通过对上海轨道交通清分系统构架的现状分析,明确清分、线路中央计算机、车站计算机等系统之间业务功能的调整方向。根据云计算技术的特点,阐述在城市轨道交通自动售检票系统中如何建立私有云计算系统、不同服务层次服务的对象以及实施的技术路线,并提出城市轨道交通自动售检票系统云计算构架的设想与模型。  相似文献   

17.
Abstract

Providing efficient public transportation has been recognized as a potential way of alleviating congestion, improving mobility, mitigating air pollution, and reducing energy consumption. Many people use public transportation systems for their daily commute, while others use different transportation modes (e.g. cars, taxis, carpools, etc.). Inexpensive fares with good transit service encourages ridership, and the resulting revenue may be used to provide better service. Optimization of transit service frequency and its associated fare structure is desirable in order to increase revenue at reasonable transit operating expenditure. The objective of the study reported here is to maximize profit subject to service capacity constraint, while elastic demand is considered. The solution methodology is developed and applied to solve the profit maximization problem in a case study based on Newark, NJ, USA. Numerical results, including optimal solutions and sensitivity analyses, are presented. It is found that an optimal temporal headway and differential fare structure that maximizes total profit for the studied subway system can be efficiently solved.  相似文献   

18.
Several decades of research on transit pricing have provided clear insights into how riders respond to price changes in both the transit and automobile sectors. For the most part, riders are insensitive to changes in either fare levels, structures, or forms of payments, though this varies considerably among user groups and operating environments. Since riders are approximately twice as sensitive to changes in travel time as they are to changes in fares, a compelling argument can be made for operating more premium quality transit services at higher prices. Such programs could be supplemented by vouchers and concessionary programs to reduce the burden of higher fares on low-income users. Also, cross-elasticity research suggests that higher automobile prices would have a significantly greater affect on ridership than lower fares. Most research on transit fare structures shows that the common practice of flat fares is highly inequitable, penalizing short-distance and off-peak users. Free fare programs have proven quite costly for each new transit user attracted and have rarely lured motorists to transit. Free fares limited to downtowns have been more successful than systemwide free fare programs. While prepayment schemes have met with success in the U.S. and Europe, honor fares have suffered from excessive revenue losses in at least one case in the U.S. Some of the more noteworthy fare policy successes in North America have been Bridgeport's combined pass-fare program, Allentown's deep discounts, Ottawa's major fare reduction and differentiation, and Columbus's substantial midday discount. As paratransit and other new transit alternatives to conventional bus continue to emerge, new, more differentiated fare practices can be expected in the future.  相似文献   

19.
This paper aims at investigating the over-prediction of public transit ridership by traditional mode choice models estimated using revealed preference data. Five different types of models are estimated and analysed, namely a traditional Revealed Preference (RP) data-based mode choice model, a hybrid mode choice model with a latent variable, a Stated Preference (SP) data-based mode switching model, a joint RP/SP mode switching model, and a hybrid mode switching model with a latent variable. A comparison of the RP data-based mode choice model with the mode choice models including a latent variable showed that the inclusion of behavioural factors (especially habit formation) significantly improved the models. The SP data-based mode switching models elucidated the reasons why traditional models tend to over-predict transit ridership by revealing the role played by different transit level-of-service attributes and their relative importance to mode switching decisions. The results showed that traditional attributes (e.g. travel cost and time) are of lower importance to mode switching behaviour than behavioural factors (e.g. habit formation towards car driving) and other transit service design attributes (e.g. crowding level, number of transfers, and schedule delays). The findings of this study provide general guidelines for developing a variety of transit ridership forecasting models depending on the availability of data and the experience of the planner.  相似文献   

20.
Downs (1962) and Thomson (1977) suggested that highway capacity expansion may produce counterproductive effects on the two-mode (auto and transit) transport system (Downs–Thomson Paradox). This paper investigates the occurrence of this paradox when transit authority can have different economic objectives (profit-maximizing or breakeven) and operating schemes (frequency, fare, or both frequency and fare). For various combinations of economic objectives and operating schemes, the interaction between highway expansion and transit service is explored, as well as its impact on travelers’ mode choices and travel utilities. Further, for each combination, the conditions for occurrence of the Downs–Thomson Paradox are established. We show that the paradox never occurs when transit authority is profit-maximizing, but it is inevitable when the transit authority is running to maximize travelers’ utility while maintaining breakeven. This is because the former transit authority tends to enhance transit service (e.g., raise frequency or reduce fare) when facing an expanded highway; and on the contrary, the latter tends to compromise transit service (e.g., reduce frequency or raise fare). Both analytical and numerical examples are provided to verify the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号