首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recently emerging trend of self-driving vehicles and information sharing technologies, made available by private technology vendors, starts creating a revolutionary paradigm shift in the coming years for traveler mobility applications. By considering a deterministic traveler decision making framework at the household level in congested transportation networks, this paper aims to address the challenges of how to optimally schedule individuals’ daily travel patterns under the complex activity constraints and interactions. We reformulate two special cases of household activity pattern problem (HAPP) through a high-dimensional network construct, and offer a systematic comparison with the classical mathematical programming models proposed by Recker (1995). Furthermore, we consider the tight road capacity constraint as another special case of HAPP to model complex interactions between multiple household activity scheduling decisions, and this attempt offers another household-based framework for linking activity-based model (ABM) and dynamic traffic assignment (DTA) tools. Through embedding temporal and spatial relations among household members, vehicles and mandatory/optional activities in an integrated space-time-state network, we develop two 0–1 integer linear programming models that can seamlessly incorporate constraints for a number of key decisions related to vehicle selection, activity performing and ridesharing patterns under congested networks. The well-structured network models can be directly solved by standard optimization solvers, and further converted to a set of time-dependent state-dependent least cost path-finding problems through Lagrangian relaxation, which permit the use of computationally efficient algorithms on large-scale high-fidelity transportation networks.  相似文献   

2.
The Time-Dependent Pollution-Routing Problem (TDPRP) consists of routing a fleet of vehicles in order to serve a set of customers and determining the speeds on each leg of the routes. The cost function includes emissions and driver costs, taking into account traffic congestion which, at peak periods, significantly restricts vehicle speeds and increases emissions. We describe an integer linear programming formulation of the TDPRP and provide illustrative examples to motivate the problem and give insights about the tradeoffs it involves. We also provide an analytical characterization of the optimal solutions for a single-arc version of the problem, identifying conditions under which it is optimal to wait idly at certain locations in order to avoid congestion and to reduce the cost of emissions. Building on these analytical results we describe a novel departure time and speed optimization algorithm for the cases when the route is fixed. Finally, using benchmark instances, we present results on the computational performance of the proposed formulation and on the speed optimization procedure.  相似文献   

3.
The interdependence between distribution center location and vehicle routing has been recognized by both academics and practitioners. However, only few attempts have been made to incorporate routing in location analysis. This paper defines the Warehouse Location-Routing Problem (WLRP) as one of simultaneously solving the DC location and vehicle routing problems. We present a mixed integer programming formulation of the WLRP. Based on this formulation, it can be seen that the WLRP is a generalization of well-known and difficult location and routing problems, such as the Location-Allocation Problem and the Multi-depot Vehicle Dispatch Problem. It is therefore a large and complex problem which cannot be solved using existing mixed-integer programming techniques. We present a heuristic solution method for the WLRP, based on decomposing the problem into three subproblems. The proposed method solves the subproblems in a sequential manner while accounting for the dependence between them. We discuss a large-scale application of the proposed method to a national distribution company at a regional level.  相似文献   

4.
This paper examines network design where OD demand is not known a priori, but is the subject of responses in household or user itinerary choices to infrastructure improvements. Using simple examples, we show that falsely assuming that household itineraries are not elastic can result in a lack in understanding of certain phenomena; e.g., increasing traffic even without increasing economic activity due to relaxing of space–time prism constraints, or worsening of utility despite infrastructure investments in cases where household objectives may conflict. An activity-based network design problem is proposed using the location routing problem (LRP) as inspiration. The bilevel formulation includes an upper level network design and shortest path problem while the lower level includes a set of disaggregate household itinerary optimization problems, posed as household activity pattern problem (HAPP) (or in the case with location choice, as generalized HAPP) models. As a bilevel problem with an NP-hard lower level problem, there is no algorithm for solving the model exactly. Simple numerical examples show optimality gaps of as much as 5% for a decomposition heuristic algorithm derived from the LRP. A large numerical case study based on Southern California data and setting suggest that even if infrastructure investments do not result in major changes in link investment decisions compared to a conventional model, the results provide much higher resolution temporal OD information to a decision maker. Whereas a conventional model would output the best set of links to invest given an assumed OD matrix, the proposed model can output the same best set of links, the same daily OD matrix, and a detailed temporal distribution of activity participation and travel from which changes in peak period OD patterns can be observed.  相似文献   

5.
This paper proposes a global optimization algorithm for solving a mixed (continuous/discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraint (MPEC). The upper level of the MNDP aims to optimize the network performance via both expansion of existing links and addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) problem. In this paper, we first formulate the UE condition as a variational inequality (VI) problem, which is defined from a finite number of extreme points of a link-flow feasible region. The MNDP is approximated as a piecewise-linear programming (P-LP) problem, which is then transformed into a mixed-integer linear programming (MILP) problem. A global optimization algorithm based on a cutting constraint method is developed for solving the MILP problem. Numerical examples are given to demonstrate the efficiency of the proposed method and to compare the results with alternative algorithms reported in the literature.  相似文献   

6.
In this paper, we consider the continuous road network design problem with stochastic user equilibrium constraint that aims to optimize the network performance via road capacity expansion. The network flow pattern is subject to stochastic user equilibrium, specifically, the logit route choice model. The resulting formulation, a nonlinear nonconvex programming problem, is firstly transformed into a nonlinear program with only logarithmic functions as nonlinear terms, for which a tight linear programming relaxation is derived by using an outer-approximation technique. The linear programming relaxation is then embedded within a global optimization solution algorithm based on range reduction technique, and the proposed approach is proved to converge to a global optimum.  相似文献   

7.
Dial-a-ride problems are concerned with the design of efficient vehicle routes for transporting individual persons from specific origin to specific destination locations. In real-life this operational planning problem is often complicated by several factors. Users may have special requirements (e.g. to be transported in a wheelchair) while service providers operate a heterogeneous fleet of vehicles from multiple depots in their service area. In this paper, a general dial-a-ride problem in which these three real-life aspects may simultaneously be taken into account is introduced: the Multi-Depot Heterogeneous Dial-A-Ride Problem (MD-H-DARP). Both a three- and two-index formulation are discussed. A branch-and-cut algorithm for the standard dial-a-ride problem is adapted to exactly solve small problem instances of the MD-H-DARP. To be able to solve larger problem instances, a new deterministic annealing meta-heuristic is proposed. Extensive numerical experiments are presented on different sets of benchmark instances for the homogeneous and the heterogeneous single depot dial-a-ride problem. Instances for the MD-H-DARP are introduced as well. The branch-and-cut algorithm provides considerably better results than an existing algorithm which uses a less compact formulation. All seven previously unsolved benchmark instances for the heterogeneous dial-a-ride problem could be solved to optimality within a matter of seconds. While computation times of the exact algorithm increase drastically with problem size, the proposed meta-heuristic algorithm provides near-optimal solutions within limited computation time for all instances. Several best known solutions for unsolved instances are improved and the algorithm clearly outperforms current state-of-the-art heuristics for the homogeneous and heterogeneous dial-a-ride problem, both in terms of solution quality and computation time.  相似文献   

8.
A new facility location model and a solution algorithm are proposed that feature (1) itinerary-interception instead of flow-interception; (2) stochastic demand as dynamic service requests; and (3) queueing delay. These features are essential to analyze battery-powered electric shared-ride taxis operating in a connected, centralized dispatch manner. The model and solution method are based on a bi-level, simulation–optimization framework that combines an upper level multiple-server allocation model with queueing delay and a lower level dispatch simulation based on earlier work by Jung and Jayakrishnan. The solution algorithm is tested on a fleet of 600 shared-taxis in Seoul, Korea, spanning 603 km2, a budget of 100 charging stations, and up to 22 candidate charging locations, against a benchmark “naïve” genetic algorithm that does not consider cyclic interactions between the taxi charging demand and the charger allocations with queue delay. Results show not only that the proposed model is capable of locating charging stations with stochastic dynamic itinerary-interception and queue delay, but that the bi-level solution method improves upon the benchmark algorithm in terms of realized queue delay, total time of operation of taxi service, and service request rejections. Furthermore, we show how much additional benefit in level of service is possible in the upper-bound scenario when the number of charging stations is unbounded.  相似文献   

9.
Due to additional trip production by land use development, the O‐D travel costs between some O‐D pairs may also change intuitively. This leads to positive and negative impacts on network users traveling between different O‐D pairs. Therefore the equity issue about the benefit distribution gained from the land‐use development problem is raised. This paper proposes an Equity based Land‐Use Transportation Problem (ELUTP) which is intended to examine the benefit distribution among the network users and the resulting equity associated with land‐use development problem in terms of the change of equilibrium O‐D travel cost. In the resulting bi‐level programming model, the upper level sub‐problem maximizes traffic production incorporating equity constraints, while the lower level sub‐problem is a combined trip distribution/assignment user equilibrium problem. Genetic algorithm based method is applied to test the models using an example network.  相似文献   

10.
A decision tool is developed for a liner shipping company to deploy its fleet considering vessel speeds and to find routes for cargos with repositioning of empty containers and transit time constraints. This problem is referred as the simultaneous Service type Assignment and container Routing Problem (SARP) in the sequel. A path-flow based mixed-integer linear programming formulation is suggested for the SARP. A Branch and Bound (BB) algorithm is used to solve the SARP exactly. A Column Generation (CG) procedure, embedded within the BB framework, is devised to solve the linear programming relaxation of the SARP. The CG subproblems arises as Shortest Path Problems (SPP). Yet incorporating transit time requirements yields constrained SPP which is NP-hard and solved by a label correcting algorithm. Computational experiments are performed on randomly generated test instances mimicking real life. The BB algorithm yields promising solutions for the SARP. The SARP with and without transit time constraints is compared with each other. Our results suggest a potential to increase profit margins of liner shipping companies by considering transit time requirements of cargos.  相似文献   

11.
The Electric Vehicle Routing Problem with Time Windows (EVRPTW) is an extension to the well-known Vehicle Routing Problem with Time Windows (VRPTW) where the fleet consists of electric vehicles (EVs). Since EVs have limited driving range due to their battery capacities they may need to visit recharging stations while servicing the customers along their route. The recharging may take place at any battery level and after the recharging the battery is assumed to be full. In this paper, we relax the full recharge restriction and allow partial recharging (EVRPTW-PR), which is more practical in the real world due to shorter recharging duration. We formulate this problem as a 0–1 mixed integer linear program and develop an Adaptive Large Neighborhood Search (ALNS) algorithm to solve it efficiently. We apply several removal and insertion mechanisms by selecting them dynamically and adaptively based on their past performances, including new mechanisms specifically designed for EVRPTW and EVRPTW-PR. These new mechanisms include the removal of the stations independently or along with the preceding or succeeding customers and the insertion of the stations with determining the charge amount based on the recharging decisions. We test the performance of ALNS by using benchmark instances from the recent literature. The computational results show that the proposed method is effective in finding high quality solutions and the partial recharging option may significantly improve the routing decisions.  相似文献   

12.
The present paper examines a Vehicle Routing Problem (VRP) of major practical importance which is referred to as the Load-Dependent VRP (LDVRP). LDVRP is applicable for transportation activities where the weight of the transported cargo accounts for a significant part of the vehicle gross weight. Contrary to the basic VRP which calls for the minimization of the distance travelled, the LDVRP objective is aimed at minimizing the total product of the distance travelled and the gross weight carried along this distance. Thus, it is capable of producing sensible routing plans which take into account the variation of the cargo weight along the vehicle trips. The LDVRP objective is closely related to the total energy requirements of the vehicle fleet, making it a credible alternative when the environmental aspects of transportation activities are examined and optimized. A novel LDVRP extension which considers simultaneous pick-up and delivery service is introduced, formulated and solved for the first time. To deal with large-scale instances of the examined problems, we propose a local-search algorithm. Towards an efficient implementation, the local-search algorithm employs a computational scheme which calculates the complex weighted-distance objective changes in constant time. Solution results are presented for both problems on a variety of well-known test cases demonstrating the effectiveness of the proposed solution approach. The structure of the obtained LDVRP and VRP solutions is compared in pursuit of interesting conclusions on the relative suitability of the two routing models, when the decision maker must deal with the weighted distance objective. In addition, results of a branch-and-cut procedure for small-scale instances of the LDVRP with simultaneous pick-ups and deliveries are reported. Finally, extensive computational experiments have been performed to explore the managerial implications of three key problem characteristics, namely the deviation of customer demands, the cargo to tare weight ratio, as well as the size of the available vehicle fleet.  相似文献   

13.
Dynamic user optimal simultaneous route and departure time choice (DUO-SRDTC) problems are usually formulated as variational inequality (VI) problems whose solution algorithms generally require continuous and monotone route travel cost functions to guarantee convergence. However, the monotonicity of the route travel cost functions cannot be ensured even if the route travel time functions are monotone. In contrast to traditional formulations, this paper formulates a DUO-SRDTC problem (that can have fixed or elastic demand) as a system of nonlinear equations. The system of nonlinear equations is a function of generalized origin-destination (OD) travel costs rather than route flows and includes a dynamic user optimal (DUO) route choice subproblem with perfectly elastic demand and a quadratic programming (QP) subproblem under certain assumptions. This study also proposes a solution method based on the backtracking inexact Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, the extragradient algorithm, and the Frank-Wolfe algorithm. The BFGS method, the extragradient algorithm, and the Frank-Wolfe algorithm are used to solve the system of nonlinear equations, the DUO route choice subproblem, and the QP subproblem, respectively. The proposed formulation and solution method can avoid the requirement of monotonicity of the route travel cost functions to obtain a convergent solution and provide a new approach with which to solve DUO-SRDTC problems. Finally, numeric examples are used to demonstrate the performance of the proposed solution method.  相似文献   

14.
Global Positioning System and other location-based services record vehicles’ spatial locations at discrete time stamps. Considering these recorded locations in space with given specific time stamps, this paper proposes a novel time-dependent graph model to estimate their likely space–time paths and their uncertainties within a transportation network. The proposed model adopts theories in time geography and produces the feasible network–time paths, the expected link travel times and dwell times at possible intermediate stops. A dynamic programming algorithm implements the model for both offline and real-time applications. To estimate the uncertainty, this paper also develops a method based on the potential path area for all feasible network–time paths. This paper uses a set of real-world trajectory data to illustrate the proposed model, prove the accuracy of estimated results and demonstrate the computational efficiency of the estimation algorithm.  相似文献   

15.
This paper investigates a new static bicycle repositioning problem in which multiple types of bikes are considered. Some types of bikes that are in short supply at a station can be substituted by other types, whereas some types of bikes can occupy the spaces of other types in the vehicle during repositioning. These activities provide two new strategies, substitution and occupancy, which are examined in this paper. The problem is formulated as a mixed-integer linear programming problem to minimize the total cost, which consists of the route travel cost, penalties due to unmet demand, and penalties associated with the substitution and occupancy strategies. A combined hybrid genetic algorithm is proposed to solve this problem. This solution algorithm consists of (i) a modified version of a hybrid genetic search with adaptive diversity control to determine routing decisions and (ii) a proposed greedy heuristic to determine the loading and unloading instructions at each visited station and the substitution and occupancy strategies. The results show that the proposed method can provide high-quality solutions with short computing times. Using small examples, this paper also reveals problem properties and repositioning strategies in bike sharing systems with multiple types of bikes.  相似文献   

16.
This paper studies a reliable joint inventory-location problem that optimizes facility locations, customer allocations, and inventory management decisions when facilities are subject to disruption risks (e.g., due to natural or man-made hazards). When a facility fails, its customers may be reassigned to other operational facilities in order to avoid the high penalty costs associated with losing service. We propose an integer programming model that minimizes the sum of facility construction costs, expected inventory holding costs and expected customer costs under normal and failure scenarios. We develop a Lagrangian relaxation solution framework for this problem, including a polynomial-time exact algorithm for the relaxed nonlinear subproblems. Numerical experiment results show that this proposed model is capable of providing a near-optimum solution within a short computation time. Managerial insights on the optimal facility deployment, inventory control strategies, and the corresponding cost constitutions are drawn.  相似文献   

17.
Multi-state supernetworks have been advanced recently for modeling individual activity-travel scheduling decisions. The main advantage is that multi-dimensional choice facets are modeled simultaneously within an integral framework, supporting systematic assessments of a large spectrum of policies and emerging modalities. However, duration choice of activities and home-stay has not been incorporated in this formalism yet. This study models duration choice in the state-of-the-art multi-state supernetworks. An activity link with flexible duration is transformed into a time-expanded bipartite network; a home location is transformed into multiple time-expanded locations. Along with these extensions, multi-state supernetworks can also be coherently expanded in space–time. The derived properties are that any path through a space–time supernetwork still represents a consistent activity-travel pattern, duration choice are explicitly associated with activity timing, duration and chain, and home-based tours are generated endogenously. A forward recursive formulation is proposed to find the optimal patterns with the optimal worst-case run-time complexity. Consequently, the trade-off between travel and time allocation to activities and home-stay can be systematically captured.  相似文献   

18.
In this study, we propose a travel itinerary problem (TIP) which aims to find itineraries with the lowest cost for travelers visiting multiple cities, under the constraints of time horizon, stop times at cities and transport alternatives with fixed departure times, arrival times, and ticket prices. First, we formulate the TIP into a 0–1 integer programming model. Then, we decompose the itinerary optimization into a macroscopic tour (i.e., visiting sequence between cities) selection process and a microscopic number (i.e., flight number, train number for each piece of movement) selection process, and use an implicit enumeration algorithm to solve the optimal combination of tour and numbers. By integrating the itinerary optimization approach and Web crawler technology, we develop a smart travel system that is able to capture online transport data and recommend the optimal itinerary that satisfies travelers’ preferences in departure time, arrival time, cabin class, and transport mode. Finally, we present case studies based on real-life transport data to illustrate the usefulness of itinerary optimization for minimizing travel cost, the computational efficiency of the implicit enumeration algorithm, and the feasibility of the smart travel system.  相似文献   

19.
This paper investigates the Operational Aircraft Maintenance Routing Problem (OAMRP). Given a set of flights for a specific homogeneous fleet type, this short-term planning problem requires building feasible aircraft routes that cover each flight exactly once and that satisfy maintenance requirements. Basically, these requirements enforce an aircraft to undergo a planned maintenance at a specified station before accumulating a maximum number of flying hours. This stage is significant to airline companies as it directly impacts the fleet availability, safety, and profitability. The contribution of this paper is twofold. First, we elucidate the complexity status of the OAMRP and we propose an exact mixed-integer programming model that includes a polynomial number of variables and constraints. Furthermore, we propose a graph reduction procedure and valid inequalities that aim at improving the model solvability. Second, we propose a very large-scale neighborhood search algorithm along with a procedure for computing tight lower bounds. We present the results of extensive computational experiments that were carried out on real-world flight networks and attest to the efficacy of the proposed exact and heuristic approaches. In particular, we provide evidence that the exact model delivers optimal solutions for instances with up to 354 flights and 8 aircraft, and that the heuristic approach consistently delivers high-quality solutions while requiring short CPU times.  相似文献   

20.
Multi-state supernetwork framework for the two-person joint travel problem   总被引:1,自引:0,他引:1  
Most travel behavior studies on route and mode choice focus only on an individual level. This paper adopts the concept of multi-state supernetworks to model the two-person joint travel problem (JTP). Travel is differentiated in terms of activity-vehicle-joint states, i.e. travel separately or jointly with which transport mode and with which activities conducted. In each state, route choice can be addressed given the state information and travel preference parameters. The joint travel pattern space is represented as a multi-state supernetwork, which is constructed by assigning the individual and joint networks to all possible states and connecting them via transfer links at joints where individuals can meet or depart. Besides route choice, the choices of where and when to meet, and which transport mode(s) to use can all be explicitly represented in a consistent fashion. A joint path through the supernetwork corresponds to a specific joint travel pattern. Then, JTP is reduced to an optimization problem to find the joint path with the minimum disutility. Three standard shortest path algorithm variants are proposed to find the optimal under different scenarios. The proposed framework further indicates the feasibility of multi-state supernetworks for addressing high dimensional problems and contributes to the design of a next generation of joint routing systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号