首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we consider the following hazmat transportation network design problem. A given set of hazmat shipments has to be shipped over a road transportation network in order to transport a given amount of hazardous materials from specific origin points to specific destination points, and we assume there are regional and local government authorities that want to regulate the hazmat transportations by imposing restrictions on the amount of hazmat traffic over the network links. In particular, the regional authority aims to minimize the total transport risk induced over the entire region in which the transportation network is embedded, while local authorities want the risk over their local jurisdictions to be the lowest possible, forcing the regional authority to assure also risk equity. We provide a linear bilevel programming formulation for this hazmat transportation network design problem that takes into account both total risk minimization and risk equity. We transform the bilevel model into a single-level mixed integer linear program by replacing the second level (follower) problem by its KKT conditions and by linearizing the complementary constraints, and then we solve the MIP problem with a commercial optimization solver. The optimal solution may not be stable, and we provide an approach for testing its stability and for evaluating the range of its solution values when it is not stable. Moreover, since the bilevel model is difficult to be solved optimally and its optimal solution may not be stable, we provide a heuristic algorithm for the bilevel model able to always find a stable solution. The proposed bilevel model and heuristic algorithm are experimented on real scenarios of an Italian regional network.  相似文献   

2.
Abstract

The current air traffic system faces recurrent saturation problems. Numerous studies are dedicated to this issue, including the present research on a new dynamic regulation filter holding frequent trajectory optimisations in a real-time sliding horizon loop process. We consider a trajectory optimisation problem arising in this context, where a feasible four-dimensional (4D) trajectory is to be built and assigned to each regulated flight to suppress sector overloads while minimising the cost of the chosen policy. We model this problem with a mixed integer linear programme and solve it with a branch-and-price approach. The pricing sub-problem looks for feasible trajectories in a dynamic three-dimensional (3D) network and is solved with a specific algorithm based on shortest path labelling algorithms and on dynamic programming. Each algorithm is tested on real-world data corresponding to a complete traffic day in the European air traffic system; experimental results, including computing times measurement, validate the solution process.  相似文献   

3.
Using a sample-based representation scheme to capture spatial and temporal travel time correlations, this article constructs an integer programming model for finding the a priori least expected time paths. We explicitly consider the non-anticipativity constraint associated with the a priori path in a time-dependent and stochastic network, and propose a number of reformulations to establish linear inequalities that can be easily dualized by a Lagrangian relaxation solution approach. The relaxed model is further decomposed into two sub-problems, which can be solved directly by using a modified label-correcting algorithm and a simple single-value linear programming method. Several solution algorithms, including a sub-gradient method, a branch and bound method, and heuristics with additional constraints on Lagrangian multipliers, are proposed to improve solution quality and find approximate optimal solutions. The numerical experiments investigate the quality and computational efficiency of the proposed solution approach.  相似文献   

4.
This paper deals with the real-time problem of scheduling and routing trains in a railway network. In the related literature, this problem is usually solved starting from a subset of routing alternatives and computing the near-optimal solution of the simplified routing problem. We study how to select the best subset of routing alternatives for each train among all possible alternatives. The real-time train routing selection problem is formulated as an integer linear programming formulation and solved via an algorithm inspired by the ant colonies’ behavior. The real-time railway traffic management problem takes as input the best subset of routing alternatives and is solved as a mixed-integer linear program. The proposed methodology is tested on two practical case studies of the French railway infrastructure: the Lille terminal station area and the Rouen line. The computational experiments are based on several practical disturbed scenarios. Our methodology allows the improvement of the state of the art in terms of the minimization of train consecutive delays. The improvement is around 22% for the Rouen instances and around 56% for the Lille instances.  相似文献   

5.
This paper develops a novel linear programming formulation for autonomous intersection control (LPAIC) accounting for traffic dynamics within a connected vehicle environment. Firstly, a lane based bi-level optimization model is introduced to propagate traffic flows in the network, accounting for dynamic departure time, dynamic route choice, and autonomous intersection control in the context of system optimum network model. Then the bi-level optimization model is transformed to the linear programming formulation by relaxing the nonlinear constraints with a set of linear inequalities. One special feature of the LPAIC formulation is that the entries of the constraint matrix has only {−1, 0, 1} values. Moreover, it is proved that the constraint matrix is totally unimodular, the optimal solution exists and contains only integer values. It is also shown that the traffic flows from different lanes pass through the conflict points of the intersection safely and there are no holding flows in the solution. Three numerical case studies are conducted to demonstrate the properties and effectiveness of the LPAIC formulation to solve autonomous intersection control.  相似文献   

6.
In this paper, we consider the continuous road network design problem with stochastic user equilibrium constraint that aims to optimize the network performance via road capacity expansion. The network flow pattern is subject to stochastic user equilibrium, specifically, the logit route choice model. The resulting formulation, a nonlinear nonconvex programming problem, is firstly transformed into a nonlinear program with only logarithmic functions as nonlinear terms, for which a tight linear programming relaxation is derived by using an outer-approximation technique. The linear programming relaxation is then embedded within a global optimization solution algorithm based on range reduction technique, and the proposed approach is proved to converge to a global optimum.  相似文献   

7.
This research focuses on planning biofuel refinery locations where the total system cost for refinery investment, feedstock and product transportation and public travel is minimized. Shipment routing of both feedstock and product in the biofuel supply chain and the resulting traffic congestion impact are incorporated into the model to decide optimal locations of biofuel refineries. A Lagrangian relaxation based heuristic algorithm is introduced to obtain near-optimum feasible solutions efficiently. To further improve optimality, a branch-and-bound framework (with linear programming relaxation and Lagrangian relaxation bounding procedures) is developed. Numerical experiments with several testing examples demonstrate that the proposed algorithms solve the problem effectively. An empirical Illinois case study and a series of sensitivity analyses are conducted to show the effects of highway congestion on refinery location design and total system costs.  相似文献   

8.
The paper proposes a binary integer programming model for the computation of optimal traffic signal offsets for an urban road network. The basic theoretical assumptions for the computation of delay on the network are those employed by the main models developed during the last few years. The set of input data coincides with that needed for the Combination Method and its extensions. The model is solved through a branch-and-backtrack method and allows the obtaining of optimal offsets for condensable or uncondensable networks without introducing any special assumption on delay-offset functions, contrary to what occurs within other mathematical programming formulations of the problem. A reduced memory dimension is required by the developed algorithm, which promptly supplies during the computation better and better sub-optimal solutions, very interesting in view of the possible application of the method to real-time control problems. The tests performed show that the method can be applied to networks of practical size.  相似文献   

9.
This paper investigates the congestion pricing problem in urban traffic networks. A first-best strategy, a second-best strategy for toll leveling in closed cordons and a second-best strategy for determining both toll levels and toll points are considered. The problem is known to be a mixed integer programming model and formulated as a bi-level optimization problem, with an objective of maximizing the social welfare. A method is presented to solve the problem, based on a novel metaheuristic algorithm, namely quantum evolutionary algorithm (QEA). To verify the proposed method, the widely used genetic algorithm (GA) is also applied to solve the problem. The problem is solved for a medium-size urban traffic network and the results of the QEA are compared against the conventional GA. Computational results show that the QEA outperforms the GA in solution quality.  相似文献   

10.
11.
The recently emerging trend of self-driving vehicles and information sharing technologies, made available by private technology vendors, starts creating a revolutionary paradigm shift in the coming years for traveler mobility applications. By considering a deterministic traveler decision making framework at the household level in congested transportation networks, this paper aims to address the challenges of how to optimally schedule individuals’ daily travel patterns under the complex activity constraints and interactions. We reformulate two special cases of household activity pattern problem (HAPP) through a high-dimensional network construct, and offer a systematic comparison with the classical mathematical programming models proposed by Recker (1995). Furthermore, we consider the tight road capacity constraint as another special case of HAPP to model complex interactions between multiple household activity scheduling decisions, and this attempt offers another household-based framework for linking activity-based model (ABM) and dynamic traffic assignment (DTA) tools. Through embedding temporal and spatial relations among household members, vehicles and mandatory/optional activities in an integrated space-time-state network, we develop two 0–1 integer linear programming models that can seamlessly incorporate constraints for a number of key decisions related to vehicle selection, activity performing and ridesharing patterns under congested networks. The well-structured network models can be directly solved by standard optimization solvers, and further converted to a set of time-dependent state-dependent least cost path-finding problems through Lagrangian relaxation, which permit the use of computationally efficient algorithms on large-scale high-fidelity transportation networks.  相似文献   

12.
This research addresses the eco-system optimal dynamic traffic assignment (ESODTA) problem which aims to find system optimal eco-routing or green routing flows that minimize total vehicular emission in a congested network. We propose a generic agent-based ESODTA model and a simplified queueing model (SQM) that is able to clearly distinguish vehicles’ speed in free-flow and congested conditions for multi-scale emission analysis, and facilitates analyzing the relationship between link emission and delay. Based on the SQM, an expanded space-time network is constructed to formulate the ESODTA with constant bottleneck discharge capacities. The resulting integer linear model of the ESODTA is solved by a Lagrangian relaxation-based algorithm. For the simulation-based ESODTA, we present the column-generation-based heuristic, which requires link and path marginal emissions in the embedded time-dependent least-cost path algorithm and the gradient-projection-based descent direction method. We derive a formula of marginal emission which encompasses the marginal travel time as a special case, and develop an algorithm for evaluating path marginal emissions in a congested network. Numerical experiments are conducted to demonstrate that the proposed algorithm is able to effectively obtain coordinated route flows that minimize the system-wide vehicular emission for large-scale networks.  相似文献   

13.
We consider an analytical signal control problem on a signalized network whose traffic flow dynamic is described by the Lighthill–Whitham–Richards (LWR) model (Lighthill and Whitham, 1955; Richards, 1956). This problem explicitly addresses traffic-derived emissions as constraints or objectives. We seek to tackle this problem using a mixed integer mathematical programming approach. Such class of problems, which we call LWR-Emission (LWR-E), has been analyzed before to certain extent. Since mixed integer programs are practically efficient to solve in many cases (Bertsimas et al., 2011b), the mere fact of having integer variables is not the most significant challenge to solving LWR-E problems; rather, it is the presence of the potentially nonlinear and nonconvex emission-related constraints/objectives that render the program computationally expensive.To address this computational challenge, we proposed a novel reformulation of the LWR-E problem as a mixed integer linear program (MILP). This approach relies on the existence of a statistically valid macroscopic relationship between the aggregate emission rate and the vehicle occupancy on the same link. This relationship is approximated with certain functional forms and the associated uncertainties are handled explicitly using robust optimization (RO) techniques. The RO allows emissions-related constraints and/or objectives to be reformulated as linear forms under mild conditions. To further reduce the computational cost, we employ a link-based LWR model to describe traffic dynamics with the benefit of fewer (integer) variables and less potential traffic holding. The proposed MILP explicitly captures vehicle spillback, avoids traffic holding, and simultaneously minimizes travel delay and addresses emission-related concerns.  相似文献   

14.
The Time-Dependent Pollution-Routing Problem (TDPRP) consists of routing a fleet of vehicles in order to serve a set of customers and determining the speeds on each leg of the routes. The cost function includes emissions and driver costs, taking into account traffic congestion which, at peak periods, significantly restricts vehicle speeds and increases emissions. We describe an integer linear programming formulation of the TDPRP and provide illustrative examples to motivate the problem and give insights about the tradeoffs it involves. We also provide an analytical characterization of the optimal solutions for a single-arc version of the problem, identifying conditions under which it is optimal to wait idly at certain locations in order to avoid congestion and to reduce the cost of emissions. Building on these analytical results we describe a novel departure time and speed optimization algorithm for the cases when the route is fixed. Finally, using benchmark instances, we present results on the computational performance of the proposed formulation and on the speed optimization procedure.  相似文献   

15.
Allocating movable resources dynamically enables evacuation management agencies to improve evacuation system performance in both the spatial and temporal dimensions. This study proposes a mixed integer linear program (MILP) model to address the dynamic resource allocation problem for transportation evacuation planning on large-scale networks. The proposed model is built on the earliest arrival flow formulation that significantly reduces problem size. A set of binary variables, specifically, the beginning and the ending time of resource allocation at a location, enable a strong formulation with tight constraints. A solution algorithm is developed to solve for an optimal solution on large-scale network applications by adopting Benders decomposition. In this algorithm, the MILP model is decomposed into two sub-problems. The first sub-problem, called the restricted master problem, identifies a feasible dynamic resource allocation plan. The second sub-problem, called the auxiliary problem, models dynamic traffic assignment in the evacuation network given a resource allocation plan. A numerical study is performed on the Dallas–Fort Worth network. The results show that the Benders decomposition algorithm can solve an optimal solution efficiently on a large-scale network.  相似文献   

16.
An aggregate air traffic flow model based on a multicommodity network is used for traffic flow management in the National Airspace System. The problem of minimizing the total travel time of flights in the National Airspace System of the United States, subject to sector capacity constraints, is formulated as an Integer Program. The resulting solution achieves optimal delay control. The Integer Program implemented for the scenarios investigated has billions of variables and constraints. It is relaxed to a Linear Program for computational efficiency. A dual decomposition method is applied to solve the large scale Linear Program in a computationally tractable manner. A rounding algorithm is developed to map the Linear Program solution to a physically acceptable result, and is implemented for the entire continental United States. A 2-h traffic flow management problem is solved with the method.  相似文献   

17.
This paper presents a new approach to time-of-day control. While time-of-day control strategies presented up-to-now are only optimal under steady-state conditions, the control algorithm derived in this paper takes into account the evolution of traffic flow according to the time delay between a volume change at a ramp and its subsequent disturbance at a freeway point downstream. The new control strategy is based on the solution of a linear programming optimization problem and makes freeway volume hold the capacity constraints for the total time of control operation. In order to reduce the computational effort a simplified version of the new algorithm is also discussed. Simulation results obtained by use of two different traffic flow models show that control derived through the new algorithm can avoid congestion and ensure operation with peak performance even if a steady-state condition is never attained.  相似文献   

18.
This paper addresses the discrete network design problem (DNDP) with multiple capacity levels, or multi-capacity DNDP for short, which determines the optimal number of lanes to add to each candidate link in a road network. We formulate the problem as a bi-level programming model, where the upper level aims to minimize the total travel time via adding new lanes to candidate links and the lower level is a traditional Wardrop user equilibrium (UE) problem. We propose two global optimization methods by taking advantage of the relationship between UE and system optimal (SO) traffic assignment principles. The first method, termed as SO-relaxation, exploits the property that an optimal network design solution under SO principle can be a good approximate solution under UE principle, and successively sorts the solutions in the order of increasing total travel time under SO principle. Optimality is guaranteed when the lower bound of the total travel time of the unexplored solutions under UE principle is not less than the total travel time of a known solution under UE principle. The second method, termed as UE-reduction, adds the objective function of the Beckmann-McGuire-Winsten transformation of UE traffic assignment to the constraints of the SO-relaxation formulation of the multi-capacity DNDP. This constraint is convex and strengthens the SO-relaxation formulation. We also develop a dynamic outer-approximation scheme to make use of the state-of-the-art mixed-integer linear programming solvers to solve the SO-relaxation formulation. Numerical experiments based on a two-link network and the Sioux-Falls network are conducted.  相似文献   

19.
Intelligent decision support systems for the real-time management of landing and take-off operations can be very effective in helping air traffic controllers to limit airport congestion at busy terminal control areas. The key optimization problem to be solved regards the assignment of airport resources to take-off and landing aircraft and the aircraft sequencing on them. The problem can be formulated as a mixed integer linear program. However, since this problem is strongly NP-hard, heuristic algorithms are typically adopted in practice to compute good quality solutions in a short computation time. This paper presents a number of algorithmic improvements implemented in the AGLIBRARY solver (a state-of-the-art optimization solver to deal with complex routing and scheduling problems) in order to improve the possibility of finding good quality solutions quickly. The proposed framework starts from a good initial solution for the aircraft scheduling problem with fixed routes (given the resources to be traversed by each aircraft), computed via a truncated branch-and-bound algorithm. A metaheuristic is then applied to improve the solution by re-routing some aircraft in the terminal control area. New metaheuristics, based on variable neighbourhood search, tabu search and hybrid schemes, are introduced. Computational experiments are performed on an Italian terminal control area under various types of disturbances, including multiple aircraft delays and a temporarily disrupted runway. The metaheuristics achieve solutions of remarkable quality, within a small computation time, compared with a commercial solver and with the previous versions of AGLIBRARY.  相似文献   

20.
This paper presents a modelling and optimisation framework for deriving ramp metering and variable speed control strategies. We formulate the optimal control problems aiming to minimise the travel delay on motorways based upon a macroscopic cell transmission model of traffic. The optimal ramp metering optimisation is formulated as a linear programming (LP) while the variable speed control problem is formulated as a mixed integer LP. The optimisation models are applied to a real scenario over a section of M25 motorway in the UK. This paper also includes various analyses on the sensitivity of the optimal control solutions with respect to different network configurations and model assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号