首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The current study contributes to the existing injury severity modeling literature by developing a multivariate probit model of injury severity and seat belt use decisions of both drivers involved in two-vehicle crashes. The modeling approach enables the joint modeling of the injury severity of multiple individuals involved in a crash, while also recognizing the endogeneity of seat belt use in predicting injury severity levels as well as accommodating unobserved heterogeneity in the effects of variables. The proposed model is applied to analyze the injury severity of drivers involved in two-vehicle road crashes in Denmark.The empirical analysis provides strong support for the notion that people offset the restraint benefits of seat belt use by driving more aggressively. Also, men and those individuals driving heavy vehicles have a lower injury risk than women and those driving lighter vehicles, respectively. At the same time, men and individuals driving heavy vehicles pose more of a danger to other drivers on the roadway when involved in a crash. Other important determinants of injury severity include speed limit on roadways where crash occurs, the presence (or absence) of center dividers (median barriers), and whether the crash involves a head-on collision. These and other results are discussed, along with implications for countermeasures to reduce injury severities in crashes. The analysis also underscores the importance of considering injury severity at a crash level, while accommodating seat belt endogeneity effects and unobserved heterogeneity effects.  相似文献   

2.
This study estimates the safety effect of illumination on accidents at highway‐rail grade crossings in the United States, using data from exhaustive data from Federal Railroad Administration database covering the period 2002–2011. Using mixed logit modeling approach, the study explores the determinants of driver injury severity at unlighted highway‐rail grade crossings compared with lighted highway‐rail grade crossings in the United States. Several key issues are explored including availability of relevant highway‐rail grade crossing accident inventory data; relevant data element structures; specification and estimation of models to estimate driver's injury severity with lighting and without lighting; and techniques to interpret model parameters. Overall, highway‐rail grade crossing lighting improves safety by reducing the probability of high‐level injury severity through improvements in driver's visibility compared with unlighted intersections. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a macro empirical study of injuries and severity, and their contributory factors, for heavy truck accidents. This analysis is carried out through the examination of the fatal injury and non-fatal injury odds ratio indices for a statistically best-fit, log-linear model. The statistical procedures used were the stepwise, backward elimination, log-linear modeling with a critical significance level of 0.05. The analysis was conducted on the set of accident severity contributory independent variables (main-effects) and all possible two-way interactions of these variables (interaction effects) for articulated heavy trucks. Among the findings of the study is that it would appear to be more effective to decrease the accident rates for these trucks rather than to try to limit their resulting severities in attempting to reduce the toll of heavy truck accidents.  相似文献   

4.
Road segments with identical site-specific attributes often exhibit significantly different crash counts due to unobserved reasons. The extent of unobserved heterogeneity associated with a road feature is to be estimated prior to selecting the relevant safety treatment. Moreover, crash count data is often over-dispersed and spatially correlated. This paper proposes a spatial negative binomial specification with random parameters for modeling crash counts of contiguous road segments. The unobserved heterogeneity is incorporated using a finite multi-variate normal mixture prior on the random parameters; this allows for non-normality, skewness in the distribution of the random parameters, facilitates correlation across the random parameters, and relaxes any distributional assumptions. The model extracts the inherent groups of road segments with crash counts that are equally sensitive to the road attributes on an average; the heterogeneity within these groups is also allowed in the proposed framework. The specification simultaneously accounts for potential spatial correlation of the crash counts from neighboring road segments. A Gibbs sampling framework is proposed that leverages recent theoretical developments on data-augmentation algorithms, and elegantly sidesteps many of the computational difficulties usually associated with Bayesian inference of count models. Empirical results suggests the presence of two latent groups and spatial correlation within the study road network. Road features with significantly different effect on crash counts across two latent groups of road segments were identified.  相似文献   

5.
The present study intended to (1) investigate the injury risk of pedestrian casualties involved in traffic crashes at signalized intersections in Hong Kong; (2) determine the effect of pedestrian volumes on the severity levels of pedestrian injuries; and (3) explore the role of spatial correlation in econometric crash‐severity models. The data from 1889 pedestrian‐related crashes at 318 signalized intersections between 2008 and 2012 were elaborately collected from the Traffic Accident Database System maintained by the Hong Kong Transport Department. To account for the cross‐intersection heterogeneity, a Bayesian hierarchical logit model with uncorrelated and spatially correlated random effects was developed. An intrinsic conditional autoregressive prior was specified for the spatial correlation term. Results revealed that (1) signalized intersections with greater pedestrian volumes generally exhibited a lower injury risk; (2) ignoring the spatial correlation potentially results in reduced model goodness‐of‐fit, an underestimation of variability and standard error of parameter estimates, as well as inconsistent, biased, and erroneous inference; (3) special attention should be paid to the following factors, which led to a significantly higher probability of pedestrians being killed or sustaining severe injury: pedestrian age greater than 65 years, casualties with head injuries, crashes that occurred on footpaths that were not obstructed/overcrowded, heedless or inattentive crossing, crashes on the two‐way carriageway, and those that occurred near tram or light‐rail transit stops. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Persistent lack of non-motorized traffic counts can affect the evidence-based decisions of transportation planning and safety-concerned agencies in making reliable investments in bikeway and other non-motorized facilities. Researchers have used various approaches to estimate bicycles counts, such as scaling, direct-demand modeling, time series, and others. In recent years, an increasing number of studies have tried to use crowdsourced data for estimating the bicycle counts. Crowdsourced data only represents a small percentage of cyclists. This percentage, on the other hand, can change based on the location, facility type, meteorological, and other factors. Moreover, the autocorrelation observed in bicycle counts may be different from the autocorrelation structure observed among crowdsourced platform users, such as Strava. Strava users are more consistent; hence, the time series count data may be stationary, while bicycle demand may vary based on seasonal factors. In addition to seasonal variation, several time-invariant contributing factors (e.g., facility type, roadway characteristics, household income) affect bicycle demand, which needs to be accounted for when developing direct demand models. In this paper, we use a mixed-effects model with autocorrelated errors to predict daily bicycle counts from crowdsourced data across the state of Texas. Additionally, we supplement crowdsourced data with other spatial and temporal factors such as roadway facility, household income, population demographics, population density and weather conditions to predict bicycle counts. The results show that using a robust methodology, we can predict bicycle demand with a 29% margin of error, which is significantly lower than merely scaling the crowdsourced data (41%).  相似文献   

7.
Few studies have explored, to date, the issue of the monetary valuation of non-fatal injuries caused by road traffic accidents. The present paper seeks to raise interest in this question and to estimate, by contingent valuation, French households’ willingness-to-pay (WTP) to improve their road safety level and reduce their risk of non-fatal injuries following a road accident. More precisely, a Tobit and a type-II Tobit model were estimated to identify factors for WTP. The results highlighted the significant positive influence of injury severity on WTP. Experience of road traffic accidents seemed to play an important role, positively influencing valuation of non-fatal injury.  相似文献   

8.
The modeling of travel decision making has been a popular topic in transportation planning. Previous studies focused on random-utility discrete choice models and machine learning methods. This paper proposes a new modeling approach that utilizes a mixed Bayesian network (BN) for travel decision inference. The authors use a predetermined BN structure and calculate priori and posterior probability distributions of the decision alternatives based on the observed explanatory variables. As a “utility-free” decision inference method, the BN model releases the linear structure in the utility function but assumes the traffic level of service variables follow multivariate Gaussian distribution conditional on the choice variable. A real-world case study is conducted by using the regional travel survey data for a two-dimensional decision modeling of both departure time choice and travel mode choice. The results indicate that a two-dimensional mixed BN provides better accuracy than decision tree models and nested logit models. In addition, one can derive continuous elasticity with respect to each continuous explanatory variable for sensitivity analysis. This new approach addresses a research gap in probabilistic travel decision making modeling as well as two-dimensional travel decision modeling.  相似文献   

9.
Cycling is attracting renewed attention as a mode of transport in western urban environments, yet the determinants of usage are poorly understood. In this paper we investigate some of these using intraday bicycle volumes collected via induction loops located at ten bike paths in the city of Melbourne, Australia, between December 2005 and June 2008. The data are hourly counts at each location, with temporal and spatial disaggregation allowing for the impact of meteorology to be measured accurately for the first time. Moreover, during this period petrol prices varied dramatically and the data also provide a unique opportunity to assess the cross-price elasticity of demand for cycling. Over-dispersed Poisson regression models are used to model volumes at each location and at each hour of the day. Seasonality and the impact of weather conditions are modelled as semiparametric and estimated using recently developed multivariate penalized spline methodology. Unlike previous studies that use aggregate data, the empirical results show a substantial meteorological and seasonal component to usage. They also suggest there was substitution into cycling as a mode of transport in response to increases in petrol prices, particularly during peak commuting periods and by commuters originating in wealthy and inner city neighbourhoods. Last, we extend the approach to a multivariate longitudinal count data model using a Gaussian copula estimated by Bayesian data augmentation. We find first order serial dependence in the hourly volumes and a ‘return trip’ effect in daily bicycle commutes.  相似文献   

10.
This study proposes a simple and practical Composite Marginal Likelihood (CML) inference approach to estimate ordered-response discrete choice models with flexible copula-based spatial dependence structures across observational units. The approach is applicable to data sets of any size, provides standard error estimates for all parameters, and does not require any simulation machinery. The combined copula–CML approach proposed here should be appealing for general multivariate modeling contexts because it is simple and flexible, and is easy to implementThe ability of the CML approach to recover the parameters of a spatially ordered process is evaluated using a simulation study, which clearly points to the effectiveness of the approach. In addition, the combined copula–CML approach is applied to study the daily episode frequency of teenagers’ physically active and physically inactive recreational activity participation, a subject of considerable interest in the transportation, sociology, and adolescence development fields. The data for the analysis are drawn from the 2000 San Francisco Bay Area Survey. The results highlight the value of the copula approach that separates the univariate marginal distribution form from the multivariate dependence structure, as well as underscore the need to consider spatial effects in recreational activity participation. The variable effects indicate that parents’ physical activity participation constitutes the most important factor influencing teenagers’ physical activity participation levels. Thus, an effective way to increase active recreation among teenagers may be to direct physical activity benefit-related information and education campaigns toward parents, perhaps at special physical education sessions at the schools of teenagers.  相似文献   

11.
This paper presents a system of hierarchical rule-based models of trip generation and modal split. Travel attributes, like trip counts for different transportation modes and commute distance, are among the modeled variables. The proposed framework could be considered as an alternative for several modules of the traditional travel demand modeling approach, while providing travel attributes at the highly disaggregate level that can be also used in activity-based micro-simulation modeling systems. Nonetheless, the modeling framework of this study is not considered as a substitute for activity-based models. The explanatory variables set ranges from socio-economic and demographic attributes of the household to the built environment characteristics of the household residential location. Another important contribution of the study is a framework in which travel attributes are modeled in conjunction with each other and the interdependencies among them are postulated through a hierarchical system of models. All the models are developed using rule-based decision tree method. Moreover, the models developed in this study present a useful improvement in increasing the practicality and accuracy of the rule-based travel data simulation models.  相似文献   

12.
Concerns over transportation energy consumption and green-household gas (GHG) emissions have prompted a growing body of research into the influence of built environment on travel behavior. Studies on the relationship between land use and travel behavior are often at a certain aggregated spatial unit such as traffic analysis zone (TAZ), spatial issues occur among individuals clustered within a zone because of the locational effects. However, recognition of the spatial issues in travel modeling was not sufficiently investigated yet. The object of this study is twofold. First, a multilevel hazard model was applied to accommodate the spatial context in which individuals generate commuting distance. Second, this research provides additional insights into examine the effects of socio-demographics and built environment on commuting distance. Using Washington metropolitan area as the case, the built environment measures were calculated for each TAZ. To estimate the model parameters, the robust maximum likelihood estimation method for a partial function was used, and the model results confirmed the important roles that played by the TAZ and individual level factors in influencing commuting distance. Meanwhile, a comparison among the general multilevel model, single level and multilevel hazard models was conducted. The results suggest that application of the multilevel hazard-based model obtains significant improvements over traditional model. The significant spatial heterogeneity parameter indicates that it is necessary to accommodate the spatial issues in the context of commuting distance. The results are expected to give urban planners a better understanding on how the TAZ and individual level factors influence the commuting distance, and consequently develop targeted countermeasures.  相似文献   

13.
This paper presents analytical models that describe the safety of unstructured and layered en route airspace designs. Here, ‘unstructured airspace’ refers to airspace designs that offer operators complete freedom in path planning, whereas ‘layered airspace’ refers to airspace concepts that utilize heading-altitude rules to vertically separate cruising aircraft based on their travel directions. With a focus on the intrinsic safety provided by an airspace design, the models compute instantaneous conflict counts as a function of traffic demand and airspace design parameters, such as traffic separation requirements and the permitted heading range per flight level. While previous studies have focused primarily on conflicts between cruising aircraft, the models presented here also take into account conflicts involving climbing and descending traffic. Fast-time simulation experiments used to validate the modeling approach indicate that the models estimate instantaneous conflict counts with high accuracy for both airspace designs. The simulation results also show that climbing and descending traffic caused the majority of conflicts for layered airspaces with a narrow heading range per flight level, highlighting the importance of including all aircraft flight phases for a comprehensive safety analysis. Because such trends could be accurately predicted by the three-dimensional models derived here, these analytical models can be used as tools for airspace design applications as they provide a detailed understanding of the relationships between the parameters that influence the safety of unstructured and layered airspace designs.  相似文献   

14.
The uncertainty of an origin-destination (O-D) trip table estimate is affected by two factors: (i) the multiplicity of solutions due to the underspecified nature of the problem, and (ii) the errors of traffic counts. In this paper, a confidence interval estimation procedure for path flow estimator (PFE) is developed for assessing the quality of O-D trip tables estimated from traffic counts. The confidence interval estimation consists of two parts: (i) a generalized demand scale (GDS) measure for quantifying the intrinsic underspecified nature of the O-D estimation problem at various spatial levels, and (ii) an error bound to quantify the contribution of input errors (traffic counts) to the estimation results. Numerical results using PFE as the O-D estimator show that the proposed confidence interval estimation procedure is able to separate the two sources of uncertainty in constructing the confidence intervals at various spatial levels. Simulation results also confirm that the proposed quality measure indeed contain the true estimates within the defined confidence intervals.  相似文献   

15.
This paper investigates the nature, and impact of the reporting bias associated with the police-reported crash data on inferences made using this data. In doing so, we merge a detailed emergency room data and police-reported crash data for a specific region in Denmark. To disentangle potentially common observable and unobservable factors that affect drivers’ injury severity risk and their crash reporting behavior, we formulate a bivariate ordered-response probit model of injury severity risk and crash reporting propensity. To empirically identify the reporting bias in this joint model, we exploit an exogenous police reform that particularly affects some specific municipalities of the region under consideration. The empirical analysis reveals substantial reporting bias in the commonly used police-reported road crash data. This non-random sample selection associated with the police-reported crash data leads to biased estimates on the effect of some of the explanatory variables in injury severity analysis. For instance, estimates based on the police-reported crash data substantially underestimate the effectiveness of seat belt use in reducing drivers’ injury severity risk.  相似文献   

16.
To reduce injuries in road crashes, better understanding is needed between the relationship of injury severity and risk factors. This study seeks to identify the contributing factors affecting crash severity with broad considerations of driver characteristics, roadway features, vehicle types, pedestrian characteristics and crash characteristics using an ordered probit model. It also explores how the interaction of these factors will affect accident severity risk. Three types of accidents were investigated: two-vehicle crashes, single vehicle crashes and pedestrian accidents. The reported crash data in Singapore from 1992 to 2001 were used to illustrate the process of parameter estimation. Several factors such as vehicle type, road type, collision type, location type, pedestrian age, time of day of accident occurrence were found to be significantly associated with injury severity. It was also found that injury severity decreases over time for the three types of accident investigated.  相似文献   

17.
Highway emissions represent a major source of many pollutants. Use of local data to model these emissions can have a large impact on the magnitude and distribution of emissions predicted and can significantly improve the accuracy of local scale air quality modeling assessments. This paper provides a comparison of top–down and bottom–up approaches for developing emission inventories for modeling in one urban area, Philadelphia, in calendar year 1999. A bottom–up approach relies on combining motor vehicle emission factors and vehicle activity data from a travel demand model estimated at the road link level to generate hourly emissions data. This approach can result in better estimates of levels and spatial distribution of on-road motor vehicle emissions than a top–down approach that relies on more aggregated information and default modeling inputs.  相似文献   

18.
To more accurately predict hourly running stabilized link volumes for emissions modeling, a new method was recently developed that disaggregates the period-based model link volumes into hourly volumes using observed traffic count data and multivariate multiple regression (MMR). This paper extends the MMR methodology with clustering and classification analyses to account for spatial variability and to accommodate model links that do not have matching observed traffic count data. The methodology was applied to data collected in the South Air Basin. The spatial analysis resulted in identifying five clusters (or 24-h profiles) for San Diego and two clusters for Los Angeles. The MMR models were then estimated with and without clustering. For San Diego, the disaggregated model volumes with clustering were much closer to the observed volumes than those without clustering, with the exception of the a.m. period. For most hours in Los Angeles, the predicted volumes with clustering were only slightly closer to the observed volumes than those predicted without clustering, suggesting that spatial effects are minimal in Los Angeles (i.e., that 24-h volume profiles are fairly similar throughout the region) and clustering is not necessary. Finally, two classification models, one for San Diego and one for Los Angeles were developed and tested for network link data that does not have matching observed count data. The results indicate the procedure is relatively good at predicting a cluster assignment for the unmatched location for Los Angeles but less accurate for San Diego.  相似文献   

19.
The rapid developments of ubiquitous mobile computing provide planners and researchers with new opportunities to understand and build smart cities by mining the massive spatial-temporal mobility data. However, given the increasing complexity and volume of the emerging mobility datasets, it also becomes challenging to build novel analytical framework that is capable of understanding the structural properties and critical features. In this paper, we introduce an analytical framework to deal with high-dimensional human mobility data. To this end, we formulate mobility data in a probabilistic setting and consider each record a multivariate observation sampled from an underlying distribution. In order to characterize this distribution, we use a multi-way probabilistic factorization model based on the concept of tensor decomposition and probabilistic latent semantic analysis (PLSA). The model provides us with a flexible approach to understand multi-way mobility involving higher-order interactions—which are difficult to characterize with conventional approaches—using simple latent structures. The model can be efficiently estimated using the expectation maximization (EM) algorithm. As a numerical example, this model is applied on a four-way dataset recording 14 million public transport journeys extracted from smart card transactions in Singapore. This framework can shed light on the modeling of urban structure by understanding mobility flows in both spatial and temporal dimensions.  相似文献   

20.
This paper presents a multi agent-based simulation framework for modeling spatial distribution of plug-in hybrid electric vehicle ownership at local residential level, discovering “plug-in hybrid electric vehicle hot zones” where ownership may quickly increase in the near future, and estimating the impacts of the increasing plug-in hybrid electric vehicle ownership on the local electric distribution network with different charging strategies. We use Knox County, Tennessee as a case study to highlight the simulation results of the agent-based simulation framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号