共查询到20条相似文献,搜索用时 0 毫秒
1.
A characteristic of low frequency probe vehicle data is that vehicles traverse multiple network components (e.g., links) between consecutive position samplings, creating challenges for (i) the allocation of the measured travel time to the traversed components, and (ii) the consistent estimation of component travel time distribution parameters. This paper shows that the solution to these problems depends on whether sampling is based on time (e.g., one report every minute) or space (e.g., one every 500 m). For the special case of segments with uniform space-mean speeds, explicit formulae are derived under both sampling principles for the likelihood of the measurements and the allocation of travel time. It is shown that time-based sampling is biased towards measurements where a disproportionally long time is spent on the last segment. Numerical experiments show that an incorrect likelihood formulation can lead to significantly biased parameter estimates depending on the shapes of the travel time distributions. The analysis reveals that the sampling protocol needs to be considered in travel time estimation using probe vehicle data. 相似文献
2.
Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: A case study from Israel 总被引:4,自引:0,他引:4
The purpose of this paper is to examine the performance of a new operational system for measuring traffic speeds and travel times which is based on information from a cellular phone service provider. Cellular measurements are compared with those obtained by dual magnetic loop detectors. The comparison uses data for a busy 14 km freeway with 10 interchanges, in both directions, during January–March of 2005. The dataset contains 1 284 587 valid loop detector speed measurements and 440 331 valid measurements from the cellular system, each measurement referring to a 5 min interval. During one week in this period, 25 floating car measurements were conducted as additional comparison observations. The analyses include visual, graphical, and statistical techniques; focusing in particular on comparisons of speed patterns in the time–space domain. The main finding is that there is a good match between the two measurement methods, indicating that the cellular phone-based system can be useful for various practical applications such as advanced traveler information systems and evaluating system performance for modeling and planning. 相似文献
3.
Bruce Hellinga Pedram Izadpanah Hiroyuki Takada Liping Fu 《Transportation Research Part C: Emerging Technologies》2008,16(6):768-782
In probe-based traffic monitoring systems, traffic conditions can be inferred based on the position data of a set of periodically polled probe vehicles. In such systems, the two consecutive polled positions do not necessarily correspond to the end points of individual links. Obtaining estimates of travel time at the individual link level requires the total traversal time (which is equal to the polling interval duration) be decomposed. This paper presents an algorithm for solving the problem of decomposing the traversal time to times taken to traverse individual road segments on the route. The proposed algorithm assumes minimal information about the network, namely network topography (i.e. links and nodes) and the free flow speed of each link. Unlike existing deterministic methods, the proposed solution algorithm defines a likelihood function that is maximized to solve for the most likely travel time for each road segment on the traversed route. The proposed scheme is evaluated using simulated data and compared to a benchmark deterministic method. The evaluation results suggest that the proposed method outperforms the bench mark method and on average improves the accuracy of the estimated link travel times by up to 90%. 相似文献
4.
This paper develops an agent-based modeling approach to predict multi-step ahead experienced travel times using real-time and historical spatiotemporal traffic data. At the microscopic level, each agent represents an expert in a decision-making system. Each expert predicts the travel time for each time interval according to experiences from a historical dataset. A set of agent interactions is developed to preserve agents that correspond to traffic patterns similar to the real-time measurements and replace invalid agents or agents associated with negligible weights with new agents. Consequently, the aggregation of each agent’s recommendation (predicted travel time with associated weight) provides a macroscopic level of output, namely the predicted travel time distribution. Probe vehicle data from a 95-mile freeway stretch along I-64 and I-264 are used to test different predictors. The results show that the agent-based modeling approach produces the least prediction error compared to other state-of-the-practice and state-of-the-art methods (instantaneous travel time, historical average and k-nearest neighbor), and maintains less than a 9% prediction error for trip departures up to 60 min into the future for a two-hour trip. Moreover, the confidence boundaries of the predicted travel times demonstrate that the proposed approach also provides high accuracy in predicting travel time confidence intervals. Finally, the proposed approach does not require offline training thus making it easily transferable to other locations and the fast algorithm computation allows the proposed approach to be implemented in real-time applications in Traffic Management Centers. 相似文献
5.
Travel time is an effective measure of roadway traffic conditions. The provision of accurate travel time information enables travelers to make smart decisions about departure time, route choice and congestion avoidance. Based on a vast amount of probe vehicle data, this study proposes a simple but efficient pattern-matching method for travel time forecasting. Unlike previous approaches that directly employ travel time as the input variable, the proposed approach resorts to matching large-scale spatiotemporal traffic patterns for multi-step travel time forecasting. Specifically, the Gray-Level Co-occurrence Matrix (GLCM) is first employed to extract spatiotemporal traffic features. The Normalized Squared Differences (NSD) between the GLCMs of current and historical datasets serve as a basis for distance measurements of similar traffic patterns. Then, a screening process with a time constraint window is implemented for the selection of the best-matched candidates. Finally, future travel times are forecasted as a negative exponential weighted combination of each candidate’s experienced travel time for a given departure. The proposed approach is tested on Ring 2, which is a 32km urban expressway in Beijing, China. The intermediate procedures of the methodology are visualized by providing an in-depth quantitative analysis on the speed pattern matching and examples of matched speed contour plots. The prediction results confirm the desirable performance of the proposed approach and its robustness and effectiveness in various traffic conditions. 相似文献
6.
The current state-of-practice for predicting travel times assumes that the speeds along the various roadway segments remain constant over the duration of the trip. This approach produces large prediction errors, especially when the segment speeds vary temporally. In this paper, we develop a data clustering and genetic programming approach for modeling and predicting the expected, lower, and upper bounds of dynamic travel times along freeways. The models obtained from the genetic programming approach are algebraic expressions that provide insights into the spatiotemporal interactions. The use of an algebraic equation also means that the approach is computationally efficient and suitable for real-time applications. Our algorithm is tested on a 37-mile freeway section encompassing several bottlenecks. The prediction error is demonstrated to be significantly lower than that produced by the instantaneous algorithm and the historical average averaged over seven weekdays (p-value <0.0001). Specifically, the proposed algorithm achieves more than a 25% and 76% reduction in the prediction error over the instantaneous and historical average, respectively on congested days. When bagging is used in addition to the genetic programming, the results show that the mean width of the travel time interval is less than 5 min for the 60–80 min trip. 相似文献
7.
This paper presents a transit network optimization method, in which travel time reliability on road is considered. A robust optimization model, taking into account the stochastic travel time, is formulated to satisfy the demand of passengers and provide reliable transit service. The optimization model aims to maximize the efficiency of passenger trips in the optimized transit network. Tabu search algorithm is defined and implemented to solve the problem. Then, transit network optimization method proposed in this paper is tested with two numerical examples: a simple route and a medium-size network. The results show the proposed method can effectively improve the reliability of a transit network and reduce the travel time of passengers in general. 相似文献
8.
With a particular emphasis on the end-to-end travel time prediction problem, this paper proposes an information-theoretic sensor location model that aims to minimize total travel time uncertainties from a set of point, point-to-point and probe sensors in a traffic network. Based on a Kalman filtering structure, the proposed measurement and uncertainty quantification models explicitly take into account several important sources of errors in the travel time estimation/prediction process, such as the uncertainty associated with prior travel time estimates, measurement errors and sampling errors. By considering only critical paths and limited time intervals, this paper selects a path travel time uncertainty criterion to construct a joint sensor location and travel time estimation/prediction framework with a unified modeling of both recurring and non-recurring traffic conditions. An analytical determinant maximization model and heuristic beam-search algorithm are used to find an effective lower bound and solve the combinatorial sensor selection problem. A number of illustrative examples and one case study are used to demonstrate the effectiveness of the proposed methodology. 相似文献
9.
The new generation of GPS-based tolling systems allow for a much higher degree of road sensing than has been available up to now. We propose an adaptive sampling scheme to collect accurate real-time traffic information from large-scale implementations of on-board GPS-based devices over a road network. The goal of the system is to minimize the transmission costs over all vehicles while satisfying requirements in the accuracy and timeliness of the traffic information obtained. The system is designed to make use of cellular communication as well as leveraging additional technologies such as roadside units equipped with WiFi and vehicle-to-vehicle (V2V) dedicated short-range communications (DSRC). As opposed to fixed sampling schemes, which transmit at regular intervals, the sampling policy we propose is adaptive to the road network and the importance of the links that the vehicle traverses. Since cellular communications are costly, in the basic centralized scheme, the vehicle is not aware of the road conditions on the network. We extend the scheme to handle non-cellular communications via roadside units and vehicle-to-vehicle (V2V) communication. Under a general traffic model, we prove that our scheme always outperforms the baseline scheme in terms of transmission cost while satisfying accuracy and real-time requirements. Our analytical results are further supported via simulations based on actual road networks for both the centralized and V2V settings. 相似文献
10.
In many countries, decision-making on proposals for national or regional infrastructure projects in passenger and freight transport includes carrying out a cost–benefit analysis for these projects. Reductions in travel times are usually a key benefit. However, if a project also reduces the variability of travel time, travellers, freight operators and shippers will enjoy additional benefits, the ‘reliability benefits’. Until now, these benefits are usually not included in the cost–benefit analysis. To include reliability of travel or transport time in the cost–benefit analysis of infrastructure projects not only monetary values of reliability, but also reliability forecasting models are needed. As a result of an extensive feasibility study carried out for the German Federal Ministry of Transport, Building and Urban Development this paper aims to provide a literature overview and outcomes of an expert panel on how best to calculate and monetise reliability benefits, synthesised into recommendations for implementing travel time reliability into existing transport models in the short, medium, and long term. The paper focuses on road transport, which has also been the topic for most of the available literature on modelling and valuing transport time reliability. 相似文献
11.
Urban expressways usually experience several levels of service (LOS) because of the stop-and-go traffic flow caused by congestion. Moreover, multiple shock waves generate at different LOS interfaces. The dynamic of shock waves strongly influences the travel time reliability (TTR) of urban expressways. This study proposes a path TTR model that considers the dynamic of shock waves by using probability-based method to characterize the TTR of urban expressways with shock waves. Two model parameters are estimated, namely distribution of travel time (TT) per unit distance and travel distances in different LOS segments. Generalized extreme value distribution and generalized Pareto distribution are derived as distributions of TT per unit distance for six different LOS. Distribution parameters are estimated by using historical floating car data. Travel distances in different LOS segments are calculated based on shock wave theory. The range of TT along the path, which can help drivers arrange their trips, can be obtained from the TTR model. Finally, comparison is made among the proposed TTR model, generalized Pareto contrast model, which does not consider different LOS or existence of shock waves, and normal contrast model, which assumes TT per unit distance as normal distribution without considering shock wave. Results show that the proposed model achieves higher prediction accuracy and reduces the prediction range of TT. The conclusions can be further extended to TT prediction and assessment of measures to improve reliability of TT in a network. 相似文献
12.
Travel behavior researchers have been intrigued by the amount of time that people allocate to travel in a day, i.e., the daily
travel time expenditure, commonly referred to as a “travel time budget”. Explorations into the notion of a travel time budget
have once again resurfaced in the context of activity-based and time use research in travel behavior modeling. This paper
revisits the issue by developing the notion of a travel time frontier (TTF) that is distinct from the actual travel time expenditure
or budget of an individual. The TTF is defined in this paper as an intrinsic maximum amount of time that people are willing
to allocate for travel. It is treated as an unobserved frontier that influences the actual travel time expenditure measured
in travel surveys. Using travel survey datasets from around the world (i.e., US, Switzerland and India), this paper sheds
new light on daily travel time expenditures by modeling the unobserved TTF and comparing these frontiers across international
contexts. The stochastic frontier modeling methodology is employed to model the unobserved TTF as a production frontier. Separate
models are estimated for commuter and non-commuter samples to recognize the differing constraints between these market segments.
Comparisons across the international contexts show considerable differences in average unobserved TTF values. 相似文献
13.
Dongjoo Park Laurence R. Rilett Byron J. Gajewski Clifford H. Spiegelman Changho Choi 《Transportation》2009,36(1):77-95
With the recent increase in the deployment of ITS technologies in urban areas throughout the world, traffic management centers
have the ability to obtain and archive large amounts of data on the traffic system. These data can be used to estimate current
conditions and predict future conditions on the roadway network. A general solution methodology for identifying the optimal
aggregation interval sizes for four scenarios is proposed in this article: (1) link travel time estimation, (2) corridor/route
travel time estimation, (3) link travel time forecasting, and (4) corridor/route travel time forecasting. The methodology
explicitly considers traffic dynamics and frequency of observations. A formulation based on mean square error (MSE) is developed
for each of the scenarios and interpreted from a traffic flow perspective. The methodology for estimating the optimal aggregation
size is based on (1) the tradeoff between the estimated mean square error of prediction and the variance of the predictor,
(2) the differences between estimation and forecasting, and (3) the direct consideration of the correlation between link travel
time for corridor/route estimation and forecasting. The proposed methods are demonstrated using travel time data from Houston,
Texas, that were collected as part of the automatic vehicle identification (AVI) system of the Houston Transtar system. It
was found that the optimal aggregation size is a function of the application and traffic condition.
相似文献
Changho ChoiEmail: |
14.
In this paper, a model-based perimeter control policy for large-scale urban vehicular networks is proposed. Assuming a homogeneously loaded vehicle network and the existence of a well-posed Network Fundamental Diagram (NFD), we describe a protected network throughout its aggregated dynamics including nonlinear exit flow characteristics. Within this framework of constrained optimal boundary flow gating, two main performance metrics are considered: (a) first, connected to the NFD, the concept of average network travel time and delay as a performance metric is defined; (b) second, at boundaries, we take into account additional external network queue dynamics governed by uncontrolled inflow demands. External queue capacities in terms of finite-link lengths are used as the second performance metric. Hence, the corresponding performance requirement is an upper bound of external queues. While external queues represent vehicles waiting to enter the protected network, internal queue describes the protected network’s aggregated behavior.By controlling the number of vehicles joining the internal queue from the external ones, herewith a network traffic flow maximization solution subject to the internal and external dynamics and their performance constraints is developed. The originally non-convex optimization problem is transformed to a numerically efficiently convex one by relaxing the performance constraints into time-dependent state boundaries. The control solution can be interpreted as a mechanism which transforms the unknown arrival process governing the number of vehicles entering the network to a regulated process, such that prescribed performance requirements on travel time in the network and upper bound on the external queue are satisfied. Comparative numerical simulation studies on a microscopic traffic simulator are carried out to show the benefits of the proposed method. 相似文献
15.
Estimating the travel time reliability (TTR) of urban arterial is critical for real-time and reliable route guidance and provides theoretical bases and technical support for sophisticated traffic management and control. The state-of-art procedures for arterial TTR estimation usually assume that path travel time follows a certain distribution, with less consideration about segment correlations. However, the conventional approach is usually unrealistic because an important feature of urban arterial is the dependent structure of travel times on continuous segments. In this study, a copula-based approach that incorporates the stochastic characteristics of segments travel time is proposed to model arterial travel time distribution (TTD), which serves as a basis for TTR quantification. First, segments correlation is empirically analyzed and different types of copula models are examined. Then, fitting marginal distributions for segment TTD is conducted by parametric and non-parametric regression analysis, respectively. Based on the estimated parameters of the models, the best-fitting copula is determined in terms of the goodness-of-fit tests. Last, the model is examined at two study sites with AVI data and NGSIM trajectory data, respectively. The results of path TTD estimation demonstrate the advantage of the proposed copula-based approach, compared with the convolution model without capturing segments correlation and the empirical distribution fitting methods. Furthermore, when considering the segments correlation effect, it was found that the estimated path TTR is more accurate than that by the convolution model. 相似文献
16.
Recent empirical studies on the value of time and reliability reveal that travel time variability plays an important role on travelers' route choice decision process. It can be considered as a risk to travelers making a trip. Therefore, travelers are not only interested in saving their travel time but also in reducing their risk. Typically, risk can be represented by two different aspects: acceptable risk and unacceptable risk. Acceptable risk refers to the reliability aspect of acceptable travel time, which is defined as the average travel time plus the acceptable additional time (or buffer time) needed to ensure more frequent on‐time arrivals, while unacceptable risk refers to the unreliability aspect of unacceptable late arrivals (though infrequent) that have a travel time excessively higher than the acceptable travel time. Most research in the network equilibrium based approach to modeling travel time variability ignores the unreliability aspect of unacceptable late arrivals. This paper examines the effects of both reliability and unreliability aspects in a network equilibrium framework. Specifically, the traditional user equilibrium model, the demand driven travel time reliability‐based user equilibrium model, and the α‐reliable mean‐excess travel time user equilibrium model are considered in the investigation under an uncertain environment due to stochastic travel demand. Numerical results are presented to examine how these models handle risk under travel time variability. 相似文献
17.
The rapid development of information and communication technologies (ICT) has been argued to affect time use patterns in a variety of ways, with consequent impacts on travel behaviour. While there exists a significant body of empirical studies documenting these effects, theoretical developments have lagged this empirical work and in particular, microeconomic time allocation models have not to date been fully extended to accommodate the implications of an increasingly digitised society. To address this gap, we present a modelling framework, grounded in time allocation theories and the goods–leisure framework, for joint modelling of the choice of mode of activity (physical versus tele-activity), travel mode and route, and ICT bundle. By providing the expression for a conditional indirect utility function, we use hypothetical scenarios to demonstrate how our framework can conceptualise various activity–travel decision situations. In our scenarios we assume a variety of situations such as the implications of severe weather, the introduction of autonomous vehicles, and the interaction between multiple decision makers. Moreover, our approach lays the microeconomic foundations for deriving subjective values of ICT qualities such as broadband speed or connection reliability. Finally, we also demonstrate the means by which our framework could be linked to various data collection protocols (stated preference exercises, diaries of social interactions, laboratory experiments) and modelling approaches (discrete choice modelling, hazard-based duration models). 相似文献
18.
Although many individual route choice models have been proposed to incorporate travel time variability as a decision factor, they are typically still deterministic in the sense that the optimal strategy requires choosing one particular route that maximizes utility. In contrast, this study introduces an individual route choice model where choosing a portfolio of routes instead of a single route is the best strategy for a rational traveler who cares about both journey time and lateness when facing stochastic network conditions. The proposed model is compared with UE and SUE models and the difference in both behavioral foundation and model characteristics is highlighted. A numerical example is introduced to demonstrate how such model can be used in traffic assignment problem. The model is then tested with GPS data collected in metropolitan Minneapolis–St. Paul, Minnesota. Our data suggest there is no single dominant route (defined here as a route with the shortest travel time for a 15 day period) in 18% of cases when links travel times are correlated. This paper demonstrates that choosing a portfolio of routes could be the rational choice of a traveler who wants to optimize route decisions under variability. 相似文献
19.
Empirical studies have revealed that travel time variability (TTV) can significantly affect travelers’ behaviors and planners’ cost-benefit assessment of transportation projects. It is therefore important to systematically quantify the value of TTV (VTTV) and its impact. Recently, Fosgerau’s valuation method makes this quantification possible by converting the value of travel time (VTT) and the VTTV into monetary unit. Travel time reliability ratio (TTRR), defined as a ratio of the VTTV to the VTT, is a key parameter in Fosgerau’s valuation method. Calculating TTRR involves an integral of the inverse cumulative distribution function (CDF) of the standardized travel time distribution (STTD), i.e., the mean lateness factor. Using a well-fitted STTD is a straightforward way to calculate TTRR. However, it will encounter the following challenges: (1) determination of a well-fitted STTD; (2) non-existence of an algebraic expression for the CDF and its inverse CDF; and (3) lack of a closed-form expression to efficiently calculate TTRR. To circumvent the above issues, this paper proposes a distribution-fitting-free analytical approach based on the Cornish-Fisher expansion as an alternative way to calculate TTRR without the need to fit the whole CDF. The validity domain is rigorously derived for guaranteeing the accuracy of the proposed method. Realistic travel time datasets that cover 17 links are used to systematically explore the feature and accuracy of the proposed method in estimating TTRR. The comparative results demonstrate that the proposed method can efficiently and effectively estimate TTRR. When travel time datasets satisfy the validity domain, the proposed method outperforms the distribution fitting method in estimating TTRR. 相似文献
20.
Travel time estimation and prediction on urban arterials is an important component of Active Traffic and Demand Management Systems (ATDMS). This paper aims in using the information of GPS probes to augment less dynamic but available information describing arterial travel times. The direction followed in this paper chooses a cooperative approach in travel time estimation using static information describing arterial geometry and signal timing, semi-dynamic information of historical travel time distributions per time of day, and utilizes GPS probe information to augment and improve the latter. First, arterial travel times are classified by identifying different travel time states, then link travel time distributions are approximated using mixtures of normal distributions. If prior travel time data is available, travel time distributions can be estimated empirically. Otherwise, travel time distribution can be estimated based on signal timing and arterial geometry. Real-time GPS travel time data is then used to identify the current traffic condition based on Bayes Theorem. Moreover, these GPS data can also be used to update the parameters of the travel time distributions using a Bayesian update. The iterative update process makes the posterior distributions more and more accurate. Finally, two comprehensive case studies using the NGSIM Peachtree Street dataset, and GPS data of Washington Avenue in Minneapolis, were conducted. The first case study estimated prior travel time distributions based on signal timing and arterial geometry under different traffic conditions. Travel time data were classified and corresponding distributions were updated. In addition, results from the Bayesian update and EM algorithm were compared. The second case study first tested the methodologies based on real GPS data and showed the importance of sample size. In addition, a methodology was proposed to distinguish new traffic conditions in the second case study. 相似文献