首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Information on link flows in a vehicular traffic network is critical for developing long-term planning and/or short-term operational management strategies. In the literature, most studies to develop such strategies typically assume the availability of measured link traffic information on all network links, either through manual survey or advanced traffic sensor technologies. In practical applications, the assumption of installed sensors on all links is generally unrealistic due to budgetary constraints. It motivates the need to estimate flows on all links of a traffic network based on the measurement of link flows on a subset of links with suitably equipped sensors. This study, addressed from a budgetary planning perspective, seeks to identify the smallest subset of links in a network on which to locate sensors that enables the accurate estimation of traffic flows on all links of the network under steady-state conditions. Here, steady-state implies that the path flows are static. A “basis link” method is proposed to determine the locations of vehicle sensors, by using the link-path incidence matrix to express the network structure and then identifying its “basis” in a matrix algebra context. The theoretical background and mathematical properties of the proposed method are elaborated. The approach is useful for deploying long-term planning and link-based applications in traffic networks.  相似文献   

2.
Many existing studies on the sensor health problem determine an individual sensor’s health status based on the statistical characteristics of collected data by the sensor. In this research, we study the sensor health problem at the network level, which is referred to as the network sensor health problem. First, based on the conservation principle of daily flows in a network, we separate all links into base links and non-base links, such that the flows on the latter can be calculated from those on the former. In reality, the network flow conservation principle can be violated due to the existence of unhealthy sensors. Then we define the least inconsistent base set of links as those that minimize the sum of squares of the differences between observed and calculated flows on non-base links. But such least inconsistent base sets may not be unique in a general road network. Finally we define the health index of an individual sensor as the frequency that it appears in all of the least inconsistent base sets. Intuitively, a lower health index suggests that the corresponding sensor is more likely to be unhealthy. We present the brute force method to find all least inconsistent base sets and calculate the health indices. We also propose a greedy search algorithm to calculate the approximate health indices more efficiently. We solve the network sensor health problem for a real-world example with 16 nodes and 30 links, among which 18 links are monitored with loop detectors. Using daily traffic count data from the Caltrans Performance Measurement System (PeMS) database, we use both the brute-force and greedy search methods to calculate the health indices for all the sensors. We find that all the four sensors flagged as unhealthy (high value) by PeMS have the lowest health indices. This confirms that a sensor with a lower health index is more likely to be unhealthy. Therefore, we can use such health indices to determine the relative reliability of different sensors’ data and prioritize the maintenance of sensors.  相似文献   

3.
The link observability problem is to identify the minimum set of links to be installed with sensors that allow the full determination of flows on all the unobserved links. Inevitably, the observed link flows are subject to measurement errors, which will accumulate and propagate in the inference of the unobserved link flows, leading to uncertainty in the inference process. In this paper, we develop a robust network sensor location model for complete link flow observability, while considering the propagation of measurement errors in the link flow inference. Our model development relies on two observations: (1) multiple sensor location schemes exist for the complete inference of the unobserved link flows, and different schemes can have different accumulated variances of the inferred flows as propagated from the measurement errors. (2) Fewer unobserved links involved in the nodal flow conservation equations will have a lower chance of accumulating measurement errors, and hence a lower uncertainty in the inferred link flows. These observations motivate a new way to formulate the sensor location problem. Mathematically, we formulate the problem as min–max and min–sum binary integer linear programs. The objective function minimizes the largest or cumulative number of unobserved links connected to each node, which reduces the chance of incurring higher variances in the inference process. Computationally, the resultant binary integer linear program permits the use of a number of commercial software packages for its globally optimal solution. Furthermore, considering the non-uniqueness of the minimum set of observed links for complete link flow observability, the optimization programs also consider a secondary criterion for selecting the sensor location scheme with the minimum accumulated uncertainty of the complete link flow inference.  相似文献   

4.
A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path reconstruction. Passive sensors simply count vehicles, while active sensors can recognize vehicle plates but are more expensive. We developed a two-stage heterogeneous sensor location model to determine the most cost-effective strategies for sensor deployment. The first stage of the model adopts the path reconstruction model defined by Castillo et al. (2008b) to determine the optimal locations of active sensors in the network. In the second stage, an algebraic framework is developed to strategically replace active sensors so that the total installation cost can be reduced while maintaining path flow observation quality. Within the algebraic framework, a scalar product operator is introduced to calculate path flows. An extension matrix is generated and used to determine if a replacement scheme is able to reconstruct all path flows. A graph model is then constructed to determine feasible replacement schemes. The problem of finding the optimal replacement scheme is addressed by utilizing the theory of maximum clique to obtain the upper bound of the number of replaced sensors and then revising this upper bound to generate the optimal replacement scheme. A polynomial-time algorithm is proposed to solve the maximum clique problem, and the optimal replacement scheme can be obtained accordingly. Three numerical experiments show that our proposed two-stage method can reduce the total costs of transportation surveillance systems without affecting the system monitor quality. The locations of the active sensors play a more critical role than the locations of the passive sensors in the number of reconstructed paths.  相似文献   

5.
There is significant current interest in the development of models to describe the day-to-day evolution of traffic flows over a network. We consider the problem of statistical inference for such models based on daily observations of traffic counts on a subset of network links. Like other inference problems for network-based models, the critical difficulty lies in the underdetermined nature of the linear system of equations that relates link flows to the latent path flows. In particular, Bayesian inference implemented using Markov chain Monte Carlo methods requires that we sample from the set of route flows consistent with the observed link flows, but enumeration of this set is usually computationally infeasible.We show how two existing conditional route flow samplers can be adapted and extended for use with day-to-day dynamic traffic. The first sampler employs an iterative route-by-route acceptance–rejection algorithm for path flows, while the second employs a simple Markov model for traveller behaviour to generate candidate entire route flow patterns when the network has a tree structure. We illustrate the application of these methods for estimation of parameters that describe traveller behaviour based on daily link count data alone.  相似文献   

6.
The paper deals with the observability problem in traffic networks, including route, origin?Cdestination and link flows, based on number plate scanning and link flow observations. A revision of the main observability concepts and methods is done using a small network. Starting with the full observability of the network based only on number plate scanning on some links, the number of scanned links is reduced and replaced by counted link flows, but keeping the full observability of all flows in the network. In this way, the cost can be substantially reduced. To this end, several methods are given and discussed, and two small and one real case of networks are used to illustrate the proposed methodologies. Finally, some conclusions and final recommendations are included.  相似文献   

7.
The traditional approach to origin–destination (OD) estimation based on data surveys is highly expensive. Therefore, researchers have attempted to develop reasonable low-cost approaches to estimating the OD vector, such as OD estimation based on traffic sensor data. In this estimation approach, the location problem for the sensors is critical. One type of sensor that can be used for this purpose, on which this paper focuses, is vehicle identification sensors. The information collected by these sensors that can be employed for OD estimation is discussed in this paper. We use data gathered by vehicle identification sensors that include an ID for each vehicle and the time at which the sensor detected it. Based on these data, the subset of sensors that detected a given vehicle and the order in which they detected it are available. In this paper, four location models are proposed, all of which consider the order of the sensors. The first model always yields the minimum number of sensors to ensure the uniqueness of path flows. The second model yields the maximum number of uniquely observed paths given a budget constraint on the sensors. The third model always yields the minimum number of sensors to ensure the uniqueness of OD flows. Finally, the fourth model yields the maximum number of uniquely observed OD flows given a budget constraint on the sensors. For several numerical examples, these four models were solved using the GAMS software. These numerical examples include several medium-sized examples, including an example of a real-world large-scale transportation network in Mashhad.  相似文献   

8.
This paper investigates the transportation network reliability based on the information provided by detectors installed on some links. A traffic flow simulator (TFS) model is formulated for assessing the network reliability (in terms of travel time reliability), in which the variation of perceived travel time error and the fluctuations of origin-destination (OD) demand are explicitly considered. On the basis of prior OD demand and partial updated detector data, the TFS can estimate the link flows for the whole network together with link/path travel times, and their variance and covariance. The travel time reliability by OD pair can also be assessed and the OD matrix can be updated simultaneously. A Monte Carlo based algorithm is developed to solve the TFS model. The application of the proposed TFS model is illustrated by a numerical example.  相似文献   

9.
Although many types of traffic sensors are currently in use, all have some drawbacks, and widespread deployment of such sensor systems has been difficult due to high costs. Due to these deficiencies, there is a need to design and evaluate a low cost sensor system that measures both vehicle speed and counts. Fulfilling this need is the primary objective of this research. Compared to the many existing infrared-based concepts that have been developed for traffic data collection, the proposed method uses a transmission-based type of optical sensor rather than a reflection-based type. Vehicles passing between sensors block transmission of the infrared signal, thus indicating the presence of a vehicle. Vehicle speeds are then determined using the known distance between multiple pairs of sensors. A prototype of the sensor system, which uses laser diode and photo detector pairs with the laser directly projected onto the photo detector, was first developed and tested in the laboratory. Subsequently this experimental prototype was implemented for field testing. The traffic flow data collected were compared to manually collected vehicle speed and traffic counts and a statistical analysis was done to evaluate the accuracy of the sensor system. The analysis found no significant difference between the data generated by the sensor system and the data collected manually at a 95% confidence interval. However, the testing scenarios were limited and so further analysis is necessary to determine the applicability in more congested urban areas. The proposed sensor system, with its simple technology and low cost, will be suitable for saturated deployment to form a densely distributed sensor network and can provide unique support for efficient traffic incident management. Additionally, because it may be quickly installed in the field without the need of elaborate fixtures, it may be deployed for use in temporary traffic management applications such as traffic management in road work zones or during special events.  相似文献   

10.
Partly because of counting errors and partly because counts may be carried out on different days, traffic counts on links of a network are unlikely to satisfy the flow conservation constraint “flow IN = flow out” at every node of the network. Van Zuylen and Willumsen (1980) have described a method of eliminating inconsistencies in traffic counts when a single count is available for each link in the network. In this paper, the method is extended to the case when more than one count is available on some links of the network. In addition, an algorithm is described for application of the method.  相似文献   

11.
Dynamic traffic routing refers to the process of (re)directing vehicles at junctions in a traffic network according to the evolving traffic conditions. The traffic management center can determine desired routes for drivers in order to optimize the performance of the traffic network by dynamic traffic routing. However, a traffic network may have thousands of links and nodes, resulting in a large-scale and computationally complex non-linear, non-convex optimization problem. To solve this problem, Ant Colony Optimization (ACO) is chosen as the optimization method in this paper because of its powerful optimization heuristic for combinatorial optimization problems. ACO is implemented online to determine the control signal – i.e., the splitting rates at each node. However, using standard ACO for traffic routing is characterized by four main disadvantages: 1. traffic flows for different origins and destinations cannot be distinguished; 2. all ants may converge to one route, causing congestion; 3. constraints cannot be taken into account; and 4. neither can dynamic link costs. These problems are addressed by adopting a novel ACO algorithm with stench pheromone and with colored ants, called Ant Colony Routing (ACR). Using the stench pheromone, the ACR algorithm can distribute the vehicles over the traffic network with less or no traffic congestion, as well as reduce the number of vehicles near some sensitive zones, such as hospitals and schools. With colored ants, the traffic flows for multiple origins and destinations can be represented. The proposed approach is also implemented in a simulation-based case study in the Walcheren area, the Netherlands, illustrating the effectiveness of the approach.  相似文献   

12.
It is essential for local traffic jurisdictions to systematically spot freeway bottlenecks and proactively deploy appropriate congestion mitigation strategies. However, diagnostic results may be influenced by unreliable measurements, analysts’ subjective knowledge and day-to-day traffic pattern variations. In order to suitably address these uncertainties and imprecise data, this study proposes a fuzzy-logic-based approach for bottleneck severity diagnosis in urban sensor networks. A dynamic bottleneck identification model is first proposed to identify bottleneck locations, and a fuzzy inference approach is then proposed to systematically diagnose the severities of the identified recurring and non-recurring bottlenecks by incorporating expert knowledge of local traffic conditions. Sample data over a 1-month period on an urban freeway in Northern Virginia was used as a case study for the analysis. The results reveal that the proposed approach can reasonably determine bottleneck severities and critical links, accounting for both spatial and temporal factors in a sensor network.  相似文献   

13.
Speed limits are usually imposed on roads in an attempt to enhance safety and sometimes serve the purpose of reducing fuel consumption and vehicular emissions as well. Most previous studies up to date focus on investigation of the effects of speed limits from a local perspective, while network-wide traffic reallocation effects are overlooked. This paper makes the first attempt to investigate how a link-specific speed limit law reallocates traffic flow in an equilibrium manner at a macroscopic network level. We find that, although the link travel time–flow relationship is altered after a speed limit is imposed, the standard traffic assignment method still applies. With the commonly adopted assumptions, the uniqueness of link travel times at user equilibrium (UE) remains valid, and the UE flows on links with non-binding speed limits are still unique. The UE flows on other links with binding speed limits may not be unique but can be explicitly characterized by a polyhedron or a linear system of equalities and inequalities. Furthermore, taking into account the traffic reallocation effects of speed limits, we compare the capability of speed limits and road pricing for decentralizing desirable network flow patterns. Although from a different perspective for regulating traffic flows with a different mechanism, a speed limit law may play the same role as a toll charge scheme and perform better than some negative (rebate) toll schemes under certain conditions for network flow management.  相似文献   

14.
The traffic-restraint congestion-pricing scheme (TRCPS) aims to maintain traffic flow within a desirable threshold for some target links by levying the appropriate link tolls. In this study, we propose a trial-and-error method using observed link flows to implement the TRCPS with the day-to-day flow dynamics. Without resorting to the origin–destination (O–D) demand functions, link travel time functions and value of time (VOT), the proposed trial-and-error method works as follows: tolls for the traffic-restraint links are first implemented each time (trial) and they are subsequently updated using observed link flows in a disequilibrium state at any arbitrary time interval. The trial-and-error method has the practical significance because it is necessary only to observe traffic flows on those tolled links and it does not require to wait for the network flow pattern achieving the user equilibrium (UE) state. The global convergence of the trial-and-error method is rigorously demonstrated under mild conditions. We theoretically show the viability of the proposed trial-and-error method, and numerical experiments are conducted to evaluate its performance. The result of this study, without doubt, enhances the confidence of practitioners to adopt this method.  相似文献   

15.
The problem of optimally locating fixed sensors on a traffic network infrastructure has been object of growing interest in the past few years. Sensor location decisions models differ from each other according to the type of sensors that are to be located and the objective that one would like to optimize. This paper surveys the existing contributions in the literature related to the problem of locating fixed sensors on the network to estimate travel times. The review consists of two parts: the first part reviews the methodological approaches for the optimal location of counting sensors on a freeway for travel time estimation; the second part focuses on the results related to the optimal location of Automatic Vehicle Identification (AVI) readers on the links of a network to get travel time information.  相似文献   

16.
Static traffic assignment models are still widely applied for strategic transport planning purposes in spite of the fact that such models produce implausible traffic flows that exceed link capacities and predict incorrect congestion locations. There have been numerous attempts to constrain link flows to capacity. Capacity constrained models with residual queues are often referred to as quasi-dynamic traffic assignment models. After reviewing the literature, we come to the conclusion that an important piece of the puzzle has been missing so far, namely the inclusion of a first order node model. In this paper we propose a novel path-based static traffic assignment model for finding a stochastic user equilibrium in general transportation networks. This model includes a first order (steady-state) node model that yields more realistic turn capacities, which are then used to determine consistent capacity constrained traffic flows, residual point (vertical) queues (upstream bottleneck links), and path travel times consistent with queuing theory. The route choice part of the model is specified as a variational inequality problem, while the network loading part is formulated as a fixed point problem. Both problems are solved using existing techniques to find a solution. We illustrate the model using hypothetical examples, and also demonstrate feasibility on large-scale networks.  相似文献   

17.
Path flow estimator (PFE) is a one-stage network observer proposed to estimate path flows and hence origin–destination (O–D) flows from traffic counts in a transportation network. Although PFE does not require traffic counts to be collected on all network links when inferring unmeasured traffic conditions, it does require all available counts to be reasonably consistent. This requirement is difficult to fulfill in practice due to errors inherited in data collection and processing. The original PFE model handles this issue by relaxing the requirement of perfect replication of traffic counts through the specification of error bounds. This method enhances the flexibility of PFE by allowing the incorporation of local knowledge, regarding the traffic conditions and the nature of traffic data, into the estimation process. However, specifying appropriate error bounds for all observed links in real networks turns out to be a difficult and time-consuming task. In addition, improper specification of the error bounds could lead to a biased estimation of total travel demand in the network. This paper therefore proposes the norm approximation method capable of internally handling inconsistent traffic counts in PFE. Specifically, three norm approximation criteria are adopted to formulate three Lp-PFE models for estimating consistent path flows and O–D flows that simultaneously minimize the deviation between the estimated and observed link volumes. A partial linearization algorithm embedded with an iterative balancing scheme and a column generation procedure is developed to solve the three Lp-PFE models. In addition, the proposed Lp-PFE models are illustrated with numerical examples and the characteristics of solutions obtained by these models are discussed.  相似文献   

18.
The origin–destination matrix is an important source of information describing transport demand in a region. Most commonly used methods for matrix estimation use link volumes collected on a subset of links in order to update an existing matrix. Traditional volume data collection methods have significant shortcomings because of the high costs involved and the fact that detectors only provide status information at specified locations in the network. Better matrix estimates can be obtained when information is available about the overall distribution of traffic through time and space. Other existing technologies are not used in matrix estimation methods because they collect volume data aggregated on groups of links, rather than on single links. That is the case of mobile systems. Mobile phones sometimes cannot provide location accuracy for estimating flows on single links but do so on groups of links; in contrast, data can be acquired over a wider coverage without additional costs. This paper presents a methodology adapted to the concept of volume aggregated on groups of links in order to use any available volume data source in traditional matrix estimation methodologies. To calculate volume data, we have used a model that has had promising results in transforming phone call data into traffic movement data. The proposed methodology using vehicle volumes obtained by such a model is applied over a large real network as a case study. The experimental results reveal the efficiency and consistency of the solution proposed, making the alternative attractive for practical applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a method for estimating missing real-time traffic volumes on a road network using both historical and real-time traffic data. The method was developed to address urban transportation networks where a non-negligible subset of the network links do not have real-time link volumes, and where that data is needed to populate other real-time traffic analytics. Computation is split between an offline calibration and a real-time estimation phase. The offline phase determines link-to-link splitting probabilities for traffic flow propagation that are subsequently used in real-time estimation. The real-time procedure uses current traffic data and is efficient enough to scale to full city-wide deployments. Simulation results on a medium-sized test network demonstrate the accuracy of the method and its robustness to missing data and variability in the data that is available. For traffic demands with a coefficient of variation as high as 40%, and a real-time feed in which as much as 60% of links lack data, we find the percentage root mean square error of link volume estimates ranges from 3.9% to 18.6%. We observe that the use of real-time data can reduce this error by as much as 20%.  相似文献   

20.
Abstract

The purpose of this study was to investigate the impact of the five strikes on the London Underground (metro) rail system, which occurred in 2009 and 2010, on macroscopic and road link travel times. A consequence of these strikes was an increase in road traffic flows above usual levels. This provides an opportunity to observe the operation of the road network under unusually high flows. The first objective involves the examination of strike effects on inbound (IT) and outbound traffic (OT) within central, inner and outer London. Travel time data obtained from automatic number plate recognition cameras are used within the first part of the analysis. The second more detailed objective was to investigate in spatio-temporal effects on travel times on five road links. Correlation analyses and general linear models are developed using both traffic flow and travel time data. According to the results of the study, the morning IT had approximately twice as much delay as the OT. Central London experienced the highest delays, followed by inner and outer London. As would be expected, the unique full-day strike in 2009 yielded the worst impact on the network with the highest percentage increase in total travel time (60%) occurring during the morning peak in the IT in inner London. The results from the link-level analysis showed statistical significance amongst the examined links indicating heterogeneous effects from one link to another. It was also found that travel time changes may be more effectively captured through time-of-day terms compared to hourly traffic flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号