共查询到4条相似文献,搜索用时 0 毫秒
1.
This paper investigates a traffic volume control scheme for a dynamic traffic network model which aims to ensure that traffic volumes on specified links do not exceed preferred levels. The problem is formulated as a dynamic user equilibrium problem with side constraints (DUE-SC) in which the side constraints represent the restrictions on the traffic volumes. Travelers choose their departure times and routes to minimize their generalized travel costs, which include early/late arrival penalties. An infinite-dimensional variational inequality (VI) is formulated to model the DUE-SC. Based on this VI formulation, we establish an existence result for the DUE-SC by showing that the VI admits at least one solution. To analyze the necessary condition for the DUE-SC, we restate the VI as an equivalent optimal control problem. The Lagrange multipliers associated with the side constraints as derived from the optimality condition of the DUE-SC provide the traffic volume control scheme. The control scheme can be interpreted as additional travel delays (either tolls or access delays) imposed upon drivers for using the controlled links. This additional delay term derived from the Lagrange multiplier is compared with its counterpart in a static user equilibrium assignment model. If the side constraint is chosen as the storage capacity of a link, the additional delay can be viewed as the effort needed to prevent the link from spillback. Under this circumstance, it is found that the flow is incompressible when the link traffic volume is equal to its storage capacity. An algorithm based on Euler’s discretization scheme and nonlinear programming is proposed to solve the DUE-SC. Numerical examples are presented to illustrate the mechanism of the proposed traffic volume control scheme. 相似文献
2.
Ramp metering (RM) is the most direct and efficient tool for the motorway traffic flow management. However, because of the usually short length of the on-ramps, RM is typically deactivated to avoid interference of the created ramp queue with adjacent street traffic. By the integration of local RM with mainstream traffic flow control (MTFC) enabled via variable speed limits (VSL), control operation upstream of active bottlenecks could be continued even if the on-ramp is full or if the RM lower bound has been reached. Such integration is proposed via the extension of an existing local cascade feedback controller for MTFC-VSL by use of a split-range-like scheme that allows different control periods for RM and MTFC-VSL. The new integrated controller remains simple yet efficient and suitable for field implementation. The controller is evaluated in simulation for a real motorway infrastructure (a ring-road) fed with real (measured) demands and compared to stand-alone RM or MTFC-VSL, both with feedback and optimal control results. The controller’s performance is shown to meet the specifications and to approach the optimal control results for the investigated scenario. 相似文献
3.
Development and evaluation of a knowledge-based system for traffic congestion management and control
Filippo Logi Stephen G. Ritchie 《Transportation Research Part C: Emerging Technologies》2001,9(6):171
This paper describes a real-time knowledge-based system (KBS) for decision support to Traffic Operation Center personnel in the selection of integrated traffic control plans after the occurrence of non-recurring congestion, on freeway and arterial networks. The uniqueness of the system, called TCM, lies in its ability to cooperate with the operator, by handling different sources of input data and inferred knowledge, and providing an explanation of its reasoning process. A data fusion algorithm for the analysis of congestion allows to represent and interpret different types of data, with various levels of reliability and uncertainty, to provide a clear assessment of traffic conditions. An efficient algorithm for the selection of control plans determines alternative traffic control responses. These are proposed to an operator, along with an explanation of the reasoning process that led to their development and an estimation of their expected effect on traffic. The validation of the system, which is one of only few examples of validation of a KBS in transportation, demonstrates the validity of the approach. The evaluation results, in a simulated environment demonstrate the ability of TCM to reduce congestion, through the formulation of traffic diversion and control schemes. 相似文献
4.
Jan-Dirk Schmcker Sonal Ahuja Michael G.H. Bell 《Transportation Research Part C: Emerging Technologies》2008,16(4):454-470
This paper presents an approach to multi-objective signal control using fuzzy logic. The signal control uses fuzzy logic where the membership functions are optimised according to the Bellman–Zadeh principle of fuzzy decision-making. This approach is both practical for the decision-maker and efficient, as it leads directly to a Pareto-optimal solution. Signal control priorities are ultimately a political decision. Therefore the tool developed in this research allows the traffic engineer to balance the objectives easily by setting acceptability and unacceptability thresholds for each objective. Particular attention is given in the example to pedestrian delays. The membership functions of the fuzzy logic are optimised by a genetic algorithm coupled to the VISSIM microscopic traffic simulator. The concept is illustrated with a case study of the Marylebone Road–Baker Street intersection in London at which pedestrians as well as vehicle flows are high. The results prove the feasibility of the framework and show the vehicle delays for a more pedestrian friendly signal control strategy. 相似文献