首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Previous route choice studies treated uncertainties as randomness; however, it is argued that other uncertainties exist beyond random effects. As a general modeling framework for route choice under uncertainties, this paper presents a model of route choice that incorporates hyperpath and network generalized extreme-value-based link choice models. Accounting for the travel time uncertainty, numerical studies of specified models within the proposed framework are conducted. The modeling framework may be helpful in various research contexts dealing with both randomness and other non-probabilistic uncertainties that cannot be exactly perceived.  相似文献   

2.
    
In this paper we analyze demand for cycling using a discrete choice model with latent variables and a discrete heterogeneity distribution for the taste parameters. More specifically, we use a hybrid choice model where latent variables not only enter into utility but also inform assignment to latent classes. Using a discrete choice experiment we analyze the effects of weather (temperature, rain, and snow), cycling time, slope, cycling facilities (bike lanes), and traffic on cycling decisions by members of Cornell University (in an area with cold and snowy winters and hilly topography). We show that cyclists can be separated into two segments based on a latent factor that summarizes cycling skills and experience. Specifically, cyclists with more skills and experience are less affected by adverse weather conditions. By deriving the median of the ratio of the marginal rate of substitution for the two classes, we show that rain deters cyclists with lower skills from bicycling 2.5 times more strongly than those with better cycling skills. The median effects also show that snow is almost 4 times more deterrent to the class of less experienced cyclists. We also model the effect of external restrictions (accidents, crime, mechanical problems) and physical condition as latent factors affecting cycling choices.  相似文献   

3.
    
In this paper we use advanced choice modelling techniques to analyse demand for freight transport in a context of modal choice. To this end, a stated preference (SP) survey was conducted in order to estimate freight shipper preferences for the main attributes that define the service offered by the different transport modes. From a methodological point of view, we focus on two critical issues in the construction of efficient choice experiments. Firstly, in obtaining good quality prior information about the parameters; and secondly, in the improved quality of the experimental data by tailoring a specific efficient design for every respondent in the sample.With these data, different mixed logit models incorporating panel correlation effects and accounting for systematic and random taste heterogeneity are estimated. For the best model specification we obtain the willingness to pay for improving the level of service and the elasticity of the choice probabilities for the different attributes. Our model provide interesting results that can be used to analyse the potential diversion of traffic from road (the current option) to alternative modes, rail or maritime, as well as to help in the obtaining of the modal distribution of commercial traffic between Spain and the European Union, currently passing through the Pyrenees.  相似文献   

4.
Modelling route choice behaviour in multi-modal transport networks   总被引:1,自引:0,他引:1  
The paper presents new findings on the influence of multi-modal trip attributes on the quality and competitiveness of inter-urban multi-modal train alternatives. The analysis covers the entire trip from origin to destination, including access and egress legs to and from the train network. The focus is on preferences for different feeder modes, railway station types and train service types as well as on the relative influence of time elements and transfer penalties. Data from dedicated surveys are used including individual objective choice sets of 235 multi-modal homebound trips in which train is the main transport mode. The observed trips have origins and destinations within the Rotterdam–Dordrecht region in The Netherlands with an average total trip time of 50 minutes. Hierarchical Nested Logit models are estimated to take account of unobserved similarities between alternatives at the home-end and the activity-end of the trip respectively, resulting in two-level nesting structures which differentiate between intercity (IC) and non-intercity railway station types at the upper level and between transit and private access modes at the lower level. In order to reflect the multi-dimensional structure of the data a more advanced so-called Multi-Nested GEV model according to the Principles of Differentiation has been estimated which significantly improves the explanatory power and stresses the importance of the home-end of the multi-modal trip.  相似文献   

5.
    
Traditionally, researchers studying transportation choice have used data either acquired from household surveys or broad, region-wide aggregates. At the disaggregate level, researchers usually do not have access to important variables or observations. This study investigates the potential usefulness of a proxy approach to modeling discrete choice vehicle ownership: substituting narrow area-based aggregate proxies for missing micro-level explanatory variables by accessing large, publicly maintained datasets. We use data from the 2000 Bay Area Travel Survey (BATS) and the contemporaneous U.S. Census file to compare three models of vehicle ownership, drawing area-wide proxies from increasing levels of aggregation. The models with proxies are compared with a parallel model that uses only survey data. The results indicate that the proxy models are preferred in terms of model selection criteria, and predict vehicle ownership as well or better than the survey model. Parameter values produced by the proxy method effectively approximate those returned by household survey models in terms of coefficient sign and significance, particularly when the aggregate variables are representative of their household-level counterparts. The proxy model with the narrowest level of aggregation achieved the best fit, coefficient precision, and percentage of correct prediction.
Jeffrey WilliamsEmail:
  相似文献   

6.
Singapore’s Electronic Road Pricing (ERP) system involves time-variable charges which are intended to spread the morning traffic peak. The charges are revised every three months and thus induce regular motorists to re-think their travel decisions. ERP traffic data, captured by the system, provides a valuable source of information for studying motorists’ travel behaviour. This paper proposes a new modelling methodology for using these data to forecast short-term impacts of rate adjustment on peak period traffic volumes. Separate models are developed for different categories of vehicles which are segmented according to their demand elasticity with respect to road pricing. A method is proposed for estimating the maximum likelihood value of preferred arrival time (PAT) for each vehicle’s arrivals at a particular ERP gantry under different charging conditions. Iterative procedures are used in both model calibration and application. The proposed approach was tested using traffic datasets recorded in 2003 at a gantry located on Singapore’s Central Expressway (CTE). The model calibration and validation show satisfactory results.  相似文献   

7.
    
Rapid advances in the development of autonomous and alternative-fuel vehicles (AFVs) are likely to transform the future of mobility and could bring benefits such as improved road safety and lower emissions. Achieving these potential benefits requires widespread consumer support for these disruptive technologies. To date, research to explore consumer perceptions of transport innovations has tended to consider them in isolation (e.g., driverless cars, electric vehicles). The current paper examines the predictors of consumer interest in and willing to pay for both AFVs and autonomous vehicles through a choice experiment conducted in six diverse markets: Germany, India, Japan, Sweden, UK and US. Using Latent Class Discrete Choice Models, we observe significant heterogeneity both within and across the country samples. For example, while Japanese consumers are generally willing to pay for autonomous vehicles, in most European countries, consumers need to be compensated for automation. Within countries, though, we found some segments – typically, those with a university degree, and self-identifying as having a pro-environmental identity and as being innovators– are more in favour of automation. Significantly, we also found that support for autonomous vehicles is associated with support for AFVs, perhaps, due to common demographic or socio-psychological predictors of both types of innovative technology. These findings are valuable for policymakers and the automotive industry in identifying potential early adopters, as well as consumer segments or cultures less convinced to adopt these innovative transport technologies.  相似文献   

8.
    
Employing a strategy of sampling of alternatives is necessary for various transportation models that have to deal with large choice-sets. In this article, we propose a method to obtain consistent, asymptotically normal and relatively efficient estimators for Logit Mixture models while sampling alternatives. Our method is an extension of previous results for Logit and MEV models. We show that the practical application of the proposed method for Logit Mixture can result in a Naïve approach, in which the kernel is replaced by the usual sampling correction for Logit. We give theoretical support for previous applications of the Naïve approach, showing not only that it yields consistent estimators, but also providing its asymptotic distribution for proper hypothesis testing. We illustrate the proposed method using Monte Carlo experimentation and real data. Results provide further evidence that the Naïve approach is suitable and practical. The article concludes by summarizing the findings of this research, assessing their potential impact, and suggesting extensions of the research in this area.  相似文献   

9.
The likelihood functions of multinomial probit (MNP)-based choice models entail the evaluation of analytically-intractable integrals. As a result, such models are usually estimated using maximum simulated likelihood (MSL) techniques. Unfortunately, for many practical situations, the computational cost to ensure good asymptotic MSL estimator properties can be prohibitive and practically infeasible as the number of dimensions of integration rises. In this paper, we introduce a maximum approximate composite marginal likelihood (MACML) estimation approach for MNP models that can be applied using simple optimization software for likelihood estimation. It also represents a conceptually and pedagogically simpler procedure relative to simulation techniques, and has the advantage of substantial computational time efficiency relative to the MSL approach. The paper provides a “blueprint” for the MACML estimation for a wide variety of MNP models.  相似文献   

10.
A stated preference ranking experiment is designed to estimate the willingness-to-pay (WTP) for reducing the amount of atmospheric pollution in a group-based residential location context. Important issues are the proper definition of the context and the variable metric for the environmental attribute. Sample members were asked to rank 10 options arising from variations in the attributes travel time to work and to study, rent of the house and an environmental attribute (the number of days of Alert, in terms of concentration of PM10, at a dwelling’s location). Multinomial logit models based on a consistent microeconomic framework were estimated for various stratifications of the data (income, pollution sensitivity, and type of dwelling currently inhabited). From these subjective values of time and WTP were derived for reductions in the number of days of alert and hence the amount of pollutant concentration at a given location. The WTP came out at about 1% of the family income for reducing one contingence day per year; this is approximately 60% higher than an estimate reported for the city of Edmonton, Canada, but the average PM10 concentration in Santiago is about six times higher.  相似文献   

11.
Airport choice is an important air travel-related decision in multiple airport regions. This paper proposes the use of a probabilistic choice set multinomial logit (PCMNL) model for airport choice that generalizes the multinomial logit model used in all earlier airport choice studies. The paper discusses the properties of the PCMNL model, and applies it to examine airport choice of business travelers residing in the San Francisco Bay Area. Substantive policy implications of the results are discussed. Overall, the results indicate that it is important to analyze the choice (consideration) set formation of travelers. Failure to recognize consideration effects of air travelers can lead to biased model parameters, misleading evaluation of the effects of policy action, and a diminished data fit.  相似文献   

12.
This paper evaluates the ability of the maximum approximate composite marginal likelihood (MACML) estimation approach to recover parameters from finite samples in mixed cross-sectional and panel multinomial probit models. Comparisons with the maximum simulated likelihood (MSL) estimation approach are also undertaken. The results indicate that the MACML approach recovers parameters much more accurately than the MSL approach in all model structures and covariance specifications. The MACML inference approach also estimates the parameters efficiently, with the asymptotic standard errors being, in general, only a small proportion of the true values. As importantly, the MACML inference approach takes only a very small fraction of the time needed for MSL estimation. In particular, the results suggest that, for the case of five random coefficients, the MACML approach is about 50 times faster than the MSL for the cross-sectional random coefficients case, about 15 times faster than the MSL for the panel inter-individual random coefficients case, and about 350 times or more faster than the MSL for the panel intra- and inter-individual random coefficients case. As the number of alternatives in the unordered-response model increases, one can expect even higher computational efficiency factors for the MACML over the MSL approach. Further, as should be evident in the panel intra- and inter-individual random coefficients case, the MSL is all but practically infeasible when the mixing structure leads to an explosion in the dimensionality of integration in the likelihood function, but these situations are handled with ease in the MACML approach. It is hoped that the MACML procedure will spawn empirical research into rich model specifications within the context of unordered multinomial choice modeling, including autoregressive random coefficients, dynamics in coefficients, space-time effects, and spatial/social interactions.  相似文献   

13.
    
This paper presents the results of a preference survey of 1545 respondents’ willingness to purchase electric vehicles (EVs) in Philadelphia. We pay particular attention to respondents’ willingness to pay for convenient charging systems and parking spaces. If the value of dedicated parking substantially outweighs the value of convenient charging systems, residential-based on-street charging systems are unlikely to ever be politically palatable. As expected, respondents are generally willing to pay for longer range, shorter charging times, lower operating costs, and shorter parking search times. For a typical respondent, a $100 per month parking charge decreases the odds of purchasing an EV by around 65%. Across mixed logit and latent class models, we find substantial variation in the willingness to pay for EV range, charge time, and ease of parking. Of note, we find two primary classes of respondents with substantially different EV preferences. The first class tends to live in multifamily housing units in central parts of the city and puts a high value on parking search time and the availability of on-street charging stations. The second class, whose members are likelier to be married, wealthy, conservative, and residing in single-family homes in more distant neighborhoods, are willing to pay more for EV range and charge time, but less for parking than the first group. They are also much likelier to consider purchasing EVs at all. We recommend that future research into EV adoption incorporate neighborhood-level features, like parking availability and average trip distances, which vary by neighborhood and almost certainly influence EV adoption.  相似文献   

14.
15.
    
The estimation of discrete choice models requires measuring the attributes describing the alternatives within each individual’s choice set. Even though some attributes are intrinsically stochastic (e.g. travel times) or are subject to non-negligible measurement errors (e.g. waiting times), they are usually assumed fixed and deterministic. Indeed, even an accurate measurement can be biased as it might differ from the original (experienced) value perceived by the individual.Experimental evidence suggests that discrepancies between the values measured by the modeller and experienced by the individuals can lead to incorrect parameter estimates. On the other hand, there is an important trade-off between data quality and collection costs. This paper explores the inclusion of stochastic variables in discrete choice models through an econometric analysis that allows identifying the most suitable specifications. Various model specifications were experimentally tested using synthetic data; comparisons included tests for unbiased parameter estimation and computation of marginal rates of substitution. Model specifications were also tested using a real case databank featuring two travel time measurements, associated with different levels of accuracy.Results show that in most cases an error components model can effectively deal with stochastic variables. A random coefficients model can only effectively deal with stochastic variables when their randomness is directly proportional to the value of the attribute. Another interesting result is the presence of confounding effects that are very difficult, if not impossible, to isolate when more flexible models are used to capture stochastic variations. Due the presence of confounding effects when estimating flexible models, the estimated parameters should be carefully analysed to avoid misinterpretations. Also, as in previous misspecification tests reported in the literature, the Multinomial Logit model proves to be quite robust for estimating marginal rates of substitution, especially when models are estimated with large samples.  相似文献   

16.
    
Discrete choice modeling is experiencing a reemergence of research interest in the inclusion of latent variables as explanatory variables of consumer behavior. There are several reasons that motivate the integration of latent attributes, including better-informed modeling of random consumer heterogeneity and treatment of endogeneity. However, current work still is at an early stage and multiple simplifying assumptions are usually imposed. For instance, most previous applications assume all of the following: independence of taste shocks and of latent attributes, exclusion restrictions, linearity of the effect of the latent attributes on the utility function, continuous manifest variables, and an a priori bound for the number of latent constructs. We derive and apply a structural choice model with a multinomial probit kernel and discrete effect indicators to analyze continuous latent segments of travel behavior, including inference on the energy paradox. Our estimator allows for interaction and simultaneity among the latent attributes, residual correlation, nonlinear effects on the utility function, flexible substitution patterns, and temporal correlation within responses of the same individual. Statistical properties of the Bayes estimator that we propose are exact and are not affected by the number of latent attributes.  相似文献   

17.
Autonomous vehicles use sensing and communication technologies to navigate safely and efficiently with little or no input from the driver. These driverless technologies will create an unprecedented revolution in how people move, and policymakers will need appropriate tools to plan for and analyze the large impacts of novel navigation systems. In this paper we derive semiparametric estimates of the willingness to pay for automation. We use data from a nationwide online panel of 1260 individuals who answered a vehicle-purchase discrete choice experiment focused on energy efficiency and autonomous features. Several models were estimated with the choice microdata, including a conditional logit with deterministic consumer heterogeneity, a parametric random parameter logit, and a semiparametric random parameter logit. We draw three key results from our analysis. First, we find that the average household is willing to pay a significant amount for automation: about $3500 for partial automation and $4900 for full automation. Second, we estimate substantial heterogeneity in preferences for automation, where a significant share of the sample is willing to pay above $10,000 for full automation technology while many are not willing to pay any positive amount for the technology. Third, our semiparametric random parameter logit estimates suggest that the demand for automation is split approximately evenly between high, modest and no demand, highlighting the importance of modeling flexible preferences for emerging vehicle technology.  相似文献   

18.
    
This study gains insight into individual motivations for choosing to own and use autonomous vehicles and develops a model for autonomous vehicle long-term choice decisions. A stated preference questionnaire is distributed to 721 individuals living across Israel and North America. Based on the characteristics of their current commutes, individuals are presented with various scenarios and asked to choose the car they would use for their commute. A vehicle choice model which includes three options is estimated:
  • (1)Continue to commute using a regular car that you have in your possession.
  • (2)Buy and shift to commuting using a privately-owned autonomous vehicle (PAV).
  • (3)Shift to using a shared-autonomous vehicle (SAV), from a fleet of on-demand cars for your commute.
A factor analysis determined five relevant latent variables describing the individuals’ attitudes: technology interest, environmental concern, enjoy driving, public transit attitude, and pro-AV sentiments. The effects that the characteristics of the individual and the autonomous vehicle have on use and acceptance are quantified through random utility models including logit kernel model taking into account panel effects.Currently, large overall hesitations towards autonomous vehicle adoption exist, with 44% of choice decisions remaining regular vehicles. Early AV adopters will likely be young, students, more educated, and spend more time in vehicles. Even if the SAV service were to be completely free, only 75% of individuals would currently be willing to use SAVs. The study also found various differences regarding the preferences of individuals in Israel and North America, namely that Israelis are overall more likely to shift to autonomous vehicles.Methods to encourage SAV use include increasing the costs for regular cars as well as educating the public about the benefits of shared autonomous vehicles.  相似文献   

19.
    
Discrete choice models are increasingly implemented using geographical data. When this is the case, it may not be sufficient to project market shares accurately, but also to correctly replicate the spatial pattern of choices. Analysts might then be interested in assessing the results of a model’s fit relative to the spatial distribution of the observed responses. While canonical approaches exist for the exploratory spatial analysis of continuous variables, similar tools have not been widely implemented for discrete choice models, where the variable of interest is categorical. For this reason, despite recent progress with spatial models for discrete outcomes, there is still not a simple and intuitive tool to assess the quality of the spatial fit of a discrete choice model. The objective of this paper is to introduce a new indicator of spatial fit that can be applied to the results of discrete choice models. Utility of the indicator is explored by means of numerical experiments and then demonstrated by means of a case study of vehicle ownership in Montreal, Canada.  相似文献   

20.
    
This paper develops new methodological insights on Random Regret Minimization (RRM) models. It starts by showing that the classical RRM model is not scale-invariant, and that – as a result – the degree of regret minimization behavior imposed by the classical RRM model depends crucially on the sizes of the estimated taste parameters in combination with the distribution of attribute-values in the data. Motivated by this insight, this paper makes three methodological contributions: (1) it clarifies how the estimated taste parameters and the decision rule are related to one another; (2) it introduces the notion of “profundity of regret”, and presents a formal measure of this concept; and (3) it proposes two new family members of random regret minimization models: the μRRM model, and the Pure-RRM model. These new methodological insights are illustrated by re-analyzing 10 datasets which have been used to compare linear-additive RUM and classical RRM models in recently published papers. Our re-analyses reveal that the degree of regret minimizing behavior imposed by the classical RRM model is generally very limited. This insight explains the small differences in model fit that have previously been reported in the literature between the classical RRM model and the linear-additive RUM model. Furthermore, we find that on 4 out of 10 datasets the μRRM model improves model fit very substantially as compared to the RUM and the classical RRM model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号