首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper offers a new look at the network flow dynamics from the viewpoint of physics by demonstrating that the traffic system, in terms of the aggregate effects of human behaviors, may exhibit like a physical system. Specifically, we look into the day-to-day evolution of network flows that arises from travelers’ route choices and their learning behavior on perceived travel costs. We show that the flow dynamics is analogous to a damped oscillatory system. The concepts of energies are introduced, including the potential energy and the kinetic energy. The potential energy, stored in each link, increases with the traffic flow on that link; the kinetic energy, generated by travelers’ day-to-day route swapping, is proportional to the square of the path flow changing speed. The potential and kinetic energies are converted to each other throughout the whole flow evolution, and the total system energy keeps decreasing owing to travelers’ tendency to stay on their current routes, which is analogous to the damping of a physical system. Finally, the system will approach the equilibrium state with minimum total potential energy and zero kinetic energy. We prove the stability of the day-to-day dynamics and provide numerical experiments to elucidate the interesting findings.  相似文献   

2.
The paper adopts the framework employed by the existing dynamic assignment models, which analyse specific network forms, and develops a methodology for analysing general networks. Traffic conditions within a link are assumed to be homogeneous, and the time varying O-D travel times and traffic flow patterns are calculated using elementary relationships from traffic flow theory and link volume conservation equations. Each individual is assumed to select a departure time and a route by trading off the travel time and schedule delay associated with each alternative. A route is considered as reasonable if it includes only links which do not take the traveller back to the origin. The set of reasonable routes is not consistant but depends on the time that an individual decides to depart from his origin. Equilibrium distributions are derived from a Markovian model which describes the evolution of travel patterns from day to day. Numerical simulation experiments are conducted to analyse the impact of different work start time flexibilities on the time dependent travel patterns. The similarity between link flows and travel times obtained from static and dynamic stochastic assignment is investigated. It is shown that in congested networks the application of static assignment results in travel times which are lower than the ones predicted by dynamic assignment.  相似文献   

3.
Traffic flows in real-life transportation systems vary on a daily basis. According to traffic flow theory, such variability should induce a similar variability in travel times, but this “internal consistency” is generally not captured by existing network equilibrium models. We present an internally-consistent network equilibrium approach, which considers two potential sources of flow variability: (i) daily variation in route choice and (ii) daily variation in origin–destination demand. We particularly aspire to a flexible formulation that permits alternative statistical assumptions, which allows the best fit to be made to observed variability data in particular applications. Joint probability distributions of route—and therefore link—flows are derived under several assumptions concerning stochastic driver behavior. A stochastic network equilibrium model with stochastic demands and route choices is formulated as a fixed point problem. We explore limiting cases which allow an equivalent convex optimization problem to be defined, and finally apply this method to a real-life network of Kanazawa City, Japan.  相似文献   

4.
This paper presents a dynamic network‐based approach for short‐term air traffic flow prediction in en route airspace. A dynamic network characterizing both the topological structure of airspace and the dynamics of air traffic flow is developed, based on which the continuity equation in fluid mechanics is adopted to describe the continuous behaviour of the en route traffic. Building on the network‐based continuity equation, the space division concept in cell transmission model is introduced to discretize the proposed model both in space and time. The model parameters are sequentially updated based on the statistical properties of the recent radar data and the new predicting results. The proposed method is applied to a real data set from Shanghai Area Control Center for the short‐term air traffic flow prediction both at flight path and en route sector level. The analysis of the case study shows that the developed method can characterize well the dynamics of the en route traffic flow, thereby providing satisfactory prediction results with appropriate uncertainty limits. The mean relative prediction errors are less than 0.10 and 0.14, and the absolute errors fall in the range of 0 to 1 and 0 to 3 in more than 95% time intervals respectively, for the flight path and en route sector level. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Transportation networks are often subjected to perturbed conditions leading to traffic disequilibrium. Under such conditions, the traffic evolution is typically modeled as a dynamical system that captures the aggregated effect of paths-shifts by drivers over time. This paper proposes a day-to-day (DTD) dynamical model that bridges two important gaps in the literature. First, existing DTD models generally consider current path flows and costs, but do not factor the sensitivity of path costs to flow. The proposed DTD model simultaneously captures all three factors in modeling the flow shift by drivers. As a driver can potentially perceive the sensitivity of path costs with the congestion level based on past experience, incorporating this factor can enhance real-world consistency. In addition, it smoothens the time trajectory of path flows, a desirable property for practice where the iterative solution procedure is typically terminated at an arbitrary point due to computational time constraints. Second, the study provides a criterion to classify paths for an origin–destination pair into two subsets under traffic disequilibrium: expensive paths and attractive paths. This facilitates flow shifts from the set of expensive paths to the set of attractive paths, enabling a higher degree of freedom in modeling flow shift compared to that of shifting flows only to the shortest path, which is behaviorally restrictive. In addition, consistent with the real-world driver behavior, it also helps to preclude flow shifts among expensive paths. Improved behavioral consistency can lead to more meaningful path/link time-dependent flow profiles for developing effective dynamic traffic management strategies for practice. The proposed DTD model is formulated as the dynamical system by drawing insights from micro-economic theory. The stability of the model and existence of its stationary point are theoretically proven. Results from computational experiments validate its modeling properties and illustrate its benefits relative to existing DTD dynamical models.  相似文献   

6.
Estimation of origin-destination (OD) matrices from link count data is a challenging problem because of the highly indeterminate relationship between the observations and the latent route flows. Conversely, estimation is straightforward if we observe the path taken by each vehicle. We consider an intermediate problem of increasing practical importance, in which link count data is supplemented by routing information for a fraction of vehicles on the network. We develop a statistical model for these combined data sources and derive some tractable normal approximations thereof. We examine likelihood-based inference for these normal models under the assumption that the probability of vehicle tracking is known. We show that the likelihood theory can be non-standard because of boundary effects, and provide conditions under which such irregular behaviour will be observed in practice. For regular cases we outline connections with existing generalised least squares methods. We then consider estimation of OD matrices under estimated and/or misspecified models for the probability of vehicle tracking. Theoretical developments are complemented by simulation experiments and an illustrative example using a section of road network from the English city of Leicester.  相似文献   

7.
Boundedly rational user equilibria (BRUE) represent traffic flow distribution patterns where travellers can take any route whose travel cost is within an ‘indifference band’ of the shortest path cost. Those traffic flow patterns satisfying the above condition constitute a set, named the BRUE solution set. It is important to obtain all the BRUE flow patterns, because it can help predict the variation of the link flow pattern in a traffic network under the boundedly rational behavior assumption. However, the methodology of constructing the BRUE set has been lacking in the established literature. This paper fills the gap by constructing the BRUE solution set on traffic networks with fixed demands. After defining ε-BRUE, where ε is the indifference band for the perceived travel cost, we formulate the ε-BRUE problem as a nonlinear complementarity problem (NCP), so that a BRUE solution can be obtained by solving a BRUE–NCP formulation. To obtain the BRUE solution set encompassing all BRUE flow patterns, we propose a methodology of generating acceptable path set which may be utilized under the boundedly rational behavior assumption. We show that with the increase of the indifference band, the acceptable path set that contains boundedly rational equilibrium flows will be augmented, and the critical values of indifference band to augment these path sets can be identified by solving a family of mathematical programs with equilibrium constraints (MPEC) sequentially. The BRUE solution set can then be obtained by assigning all traffic demands to the acceptable path set. Various numerical examples are given to illustrate our findings.  相似文献   

8.
This paper generalizes and extends classical traffic assignment models to characterize the statistical features of Origin-Destination (O-D) demands, link/path flow and link/path costs, all of which vary from day to day. The generalized statistical traffic assignment (GESTA) model has a clear multi-level variance structure. Flow variance is analytically decomposed into three sources, O-D demands, route choices and measurement errors. Consequently, optimal decisions on roadway design, maintenance, operations and planning can be made using estimated probability distributions of link/path flow and system performance. The statistical equilibrium in GESTA is mathematically defined. Its multi-level statistical structure well fits large-scale data mining techniques. The embedded route choice model is consistent with the settings of O-D demands considering link costs that vary from day to day. We propose a Method of Successive Averages (MSA) based solution algorithm to solve for GESTA. Its convergence and computational complexity are analyzed. Three example networks including a large-scale network are solved to provide insights for decision making and to demonstrate computational efficiency.  相似文献   

9.
The paper deals with the observability problem in traffic networks, including route, origin?Cdestination and link flows, based on number plate scanning and link flow observations. A revision of the main observability concepts and methods is done using a small network. Starting with the full observability of the network based only on number plate scanning on some links, the number of scanned links is reduced and replaced by counted link flows, but keeping the full observability of all flows in the network. In this way, the cost can be substantially reduced. To this end, several methods are given and discussed, and two small and one real case of networks are used to illustrate the proposed methodologies. Finally, some conclusions and final recommendations are included.  相似文献   

10.
Static traffic assignment models are still widely applied for strategic transport planning purposes in spite of the fact that such models produce implausible traffic flows that exceed link capacities and predict incorrect congestion locations. There have been numerous attempts to constrain link flows to capacity. Capacity constrained models with residual queues are often referred to as quasi-dynamic traffic assignment models. After reviewing the literature, we come to the conclusion that an important piece of the puzzle has been missing so far, namely the inclusion of a first order node model. In this paper we propose a novel path-based static traffic assignment model for finding a stochastic user equilibrium in general transportation networks. This model includes a first order (steady-state) node model that yields more realistic turn capacities, which are then used to determine consistent capacity constrained traffic flows, residual point (vertical) queues (upstream bottleneck links), and path travel times consistent with queuing theory. The route choice part of the model is specified as a variational inequality problem, while the network loading part is formulated as a fixed point problem. Both problems are solved using existing techniques to find a solution. We illustrate the model using hypothetical examples, and also demonstrate feasibility on large-scale networks.  相似文献   

11.
Estimation of intersection turning movements is one of the key inputs required for a variety of transportation analysis, including intersection geometric design, signal timing design, traffic impact assessment, and transportation planning. Conventional approaches that use manual techniques for estimation of turning movements are insensitive to congestion. The drawbacks of the manual techniques can be amended by integrating a network traffic model with a computation procedure capable of estimating turning movements from a set of link traffic counts and intersection turning movement counts. This study proposes using the path flow estimator, originally used to estimate path flows (hence origin–destination flows), to derive not only complete link flows, but also turning movements for the whole road network given some counts at selected roads and intersections. Two case studies using actual traffic counts are used to demonstrate the proposed intersection turning movement estimation procedure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
First-order network flow models are coupled systems of differential equations which describe the build-up and dissipation of congestion along network road segments, known as link models. Models describing flows across network junctions, referred to as node models, play the role of the coupling between the link models and are responsible for capturing the propagation of traffic dynamics through the network. Node models are typically stated as optimization problems, so that the coupling between the link dynamics is not known explicitly. This renders network flow models analytically intractable. This paper examines the properties of node models for urban networks. Solutions to node models that are free of traffic holding, referred to as holding-free solutions, are formally defined and it is shown that flow maximization is only a sufficient condition for holding-free solutions. A simple greedy algorithm is shown to produce holding-free solutions while also respecting the invariance principle. Staging movements through nodes in a manner that prevents conflicting flows from proceeding through the nodes simultaneously is shown to simplify the node models considerably and promote unique solutions. The staging also models intersection capacities in a more realistic way by preventing unrealistically large flows when there is ample supply in the downstream and preventing artificial blocking when some of the downstream supplies are restricted.  相似文献   

13.
A dynamic traffic assignment (DTA) model typically consists of a traffic performance model and a route choice model. The traffic performance model describes how traffic propagates (over time) along routes connecting origin-destination (OD) pairs, examples being the cell transmission model, the vertical queueing model and the travel time model. This is implemented in a dynamic network loading (DNL) algorithm, which uses the given route inflows to compute the link inflows (and hence link costs), which are then used to compute the route travel times (and hence route costs). A route swap process specifies the route inflows for tomorrow (at the next iteration) based on the route inflows today (at the current iteration). A dynamic user equilibrium (DUE), where each traveller on the network cannot reduce his or her cost of travel by switching to another route, can be sought by iterating between the DNL algorithm and the route swap process. The route swap process itself takes up very little computational time (although route set generation can be very computationally intensive for large networks). However, the choice of route swap process dramatically affects convergence and the speed of convergence. The paper details several route swap processes and considers whether they lead to a convergent system, assuming that the route cost vector is a monotone function of the route inflow vector.  相似文献   

14.
This paper examines existing day-to-day models based on a virtual day-to-day route choice experiment using the latest mobile Internet technologies. With the realized day-to-day path flows and path travel times in the experiment, we calibrate several well-designed path-based day-to-day models that take the Wardrop’s user equilibrium as (part of) their stationary states. The nonlinear effects of path flows and path time differences on path switching are then investigated. Participants’ path preferences, time-varying sensitivity, and learning behavior in the day-to-day process are also examined. The prediction power of various models with various settings (nonlinear effects, time-varying sensitivity, and learning) is compared. The assumption of “rational behavior adjustment process” in Yang and Zhang (2009) is further verified. Finally, evolutions of different Lyapunov functions used in the literature are plotted, and no obvious diversity is observed.  相似文献   

15.
In this article a doubly dynamis assignment model for a general network is presented. It is assumed that users' choices are based on information about travel times and generalized transportation costs occurred in a finite number of previous days and, possibly, in previous periods of the same day. The information may be supplied and managed by an informative system. In this context, path and link flows vary for different subperiods of the same day (within-day dynamics) and for different days (day-to-day dynamics). The proposed model follows a nonequilibrium approach in which both within-day and day-to-day flow fluctuations are modelled as a stochastic process. A model of dynamic network loading for computing within-day variable arc flows from path flows is also presented. The model deals explicitly with queuing at oversaturated intersections and can be formulated as a fixed point problem. A solution scheme for the doubly dynamic assignment model is presented embedding a solution algorithm for the fixed-point problem.  相似文献   

16.
The traffic-restraint congestion-pricing scheme (TRCPS) aims to maintain traffic flow within a desirable threshold for some target links by levying the appropriate link tolls. In this study, we propose a trial-and-error method using observed link flows to implement the TRCPS with the day-to-day flow dynamics. Without resorting to the origin–destination (O–D) demand functions, link travel time functions and value of time (VOT), the proposed trial-and-error method works as follows: tolls for the traffic-restraint links are first implemented each time (trial) and they are subsequently updated using observed link flows in a disequilibrium state at any arbitrary time interval. The trial-and-error method has the practical significance because it is necessary only to observe traffic flows on those tolled links and it does not require to wait for the network flow pattern achieving the user equilibrium (UE) state. The global convergence of the trial-and-error method is rigorously demonstrated under mild conditions. We theoretically show the viability of the proposed trial-and-error method, and numerical experiments are conducted to evaluate its performance. The result of this study, without doubt, enhances the confidence of practitioners to adopt this method.  相似文献   

17.
The link observability problem is to identify the minimum set of links to be installed with sensors that allow the full determination of flows on all the unobserved links. Inevitably, the observed link flows are subject to measurement errors, which will accumulate and propagate in the inference of the unobserved link flows, leading to uncertainty in the inference process. In this paper, we develop a robust network sensor location model for complete link flow observability, while considering the propagation of measurement errors in the link flow inference. Our model development relies on two observations: (1) multiple sensor location schemes exist for the complete inference of the unobserved link flows, and different schemes can have different accumulated variances of the inferred flows as propagated from the measurement errors. (2) Fewer unobserved links involved in the nodal flow conservation equations will have a lower chance of accumulating measurement errors, and hence a lower uncertainty in the inferred link flows. These observations motivate a new way to formulate the sensor location problem. Mathematically, we formulate the problem as min–max and min–sum binary integer linear programs. The objective function minimizes the largest or cumulative number of unobserved links connected to each node, which reduces the chance of incurring higher variances in the inference process. Computationally, the resultant binary integer linear program permits the use of a number of commercial software packages for its globally optimal solution. Furthermore, considering the non-uniqueness of the minimum set of observed links for complete link flow observability, the optimization programs also consider a secondary criterion for selecting the sensor location scheme with the minimum accumulated uncertainty of the complete link flow inference.  相似文献   

18.
Most deterministic day-to-day traffic evolution models, either in continuous-time or discrete-time space, have been formulated based on a fundamental assumption on driver route choice rationality where a driver seeks to maximize her/his marginal benefit defined as the difference between the perceived route costs. The notion of rationality entails the exploration of the marginal decision rule from economic theory, which states that a rational individual evaluates his/her marginal utility, defined as the difference between the marginal benefit and the marginal cost, of each incremental decision. Seeking to analyze the marginal decision rule in the modeling of deterministic day-to-day traffic evolution, this paper proposes a modeling framework which introduces a term to capture the marginal cost to the driver induced by route switching. The proposed framework enables to capture both benefit and cost associated with route changes. The marginal cost is then formulated upon the assumption that drivers are able to predict other drivers’ responses to the current traffic conditions, which is adopted based on the notion of strategic thinking of rational players developed in behavior game theory. The marginal cost based on 1-step strategic thinking also describes the “shadow price” of shifting routes, which helps to explain the behavioral tendency of the driver perceiving the cost-sensitivity to link/route flows. After developing a formulation of the marginal utility day-to-day model, its theoretical properties are analyzed, including the invariance property, asymptotic stability, and relationship with the rational behavioral adjustment process.  相似文献   

19.
Over the past few years, much attention has been paid to computing flows for multi-class network equilibrium models that exhibit uniqueness of the class flows and proportionality (Bar-Gera et al., 2012). Several new algorithms have been developed such as bush based methods of Bar-Gera (2002), Dial (2006), and Gentile (2012) that are able to obtain very fine solutions of network equilibrium models. These solutions can be post processed (Bar-Gera, 2006) in order to ensure proportionality and class uniqueness of the flows. Recently developed, the TAPAS, algorithm (Bar Gera, 2010) is able to produce solutions that have proportionality embedded, without requiring post processing. It was generally accepted that these methods for solving UE traffic assignment are the only way to obtain unique path and class link flows. The purpose of this paper is to show that the linear approximation method and some of its variants satisfy these conditions as well. In addition, some analytical results regarding the relation between steps of the linear approximation algorithm and the path flows entropy are presented.  相似文献   

20.
Through relaxing the behavior assumption adopted in Smith’s model (Smith, 1984), we propose a discrete dynamical system to formulate the day-to-day evolution process of traffic flows from a non-equilibrium state to an equilibrium state. Depending on certain preconditions, the equilibrium state can be equivalent to a Wardrop user equilibrium (UE), Logit-based stochastic user equilibrium (SUE), or boundedly rational user equilibrium (BRUE). These equivalence properties indicate that, to make day-to-day flows evolve to equilibrium flows, it is not necessary for travelers to choose their routes based on actual travel costs of the previous day. Day-to-day flows can still evolve to equilibrium flows provided that travelers choose their routes based on estimated travel costs which satisfy these preconditions. We also show that, under a more general assumption than the monotonicity of route cost function, the trajectory of the dynamical system converges to a set of equilibrium flows by reasonably setting these parameters in the dynamical system. Finally, numerical examples are presented to demonstrate the application and properties of the dynamical system. The study is helpful for understanding various processes of forming traffic jam and designing an algorithm for calculating equilibrium flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号