首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Book review     
TRANSPORTATION ENGINEERING, by Jason C. Yu. Elsevier North Holland, New York, 1982. 462 pp. ($32.50 U.S. and Canada, $55.75 elsewhere)

FUNDAMENTALS OF TRAFFIC ENGINEERING, 10th Edition by W. S. Hombur‐ger and James H. Kell. University of California, Institute of Transportation Studies, 1981.

DECISION THEORY AND INCOMPLETE KNOWLEDGE, by Z. W. Kmietowicz and A. D. Pearman. Gower Publishing Co., Aldershot, England, pp. 121. (£12.50)

URBAN PUBLIC TRANSPORTATION, by Vukan R. Vuchic. Prentice Hall Inc., Englewood Cliffs, N.J. 1981. 673 pp. (£27.20)

AUTOS, TRANSIT AND CITIES, by John R. Meyer and Jose A. Gomez‐Ibanez. Harvard University Press, Cambridge Mass., 1981. 359 pp. ($20.00)

PUBLICITY AND CUSTOMER RELATIONS IN TRANSPORT MANAGEMENT, by David W. Wragg. Gower. 144 pp. (£12.50 case)  相似文献   

2.
    
The dispersion of traffic-related pollutants in urban street canyons is of importance for the health and quality of lives. To reveal the inherent principle, researchers have performed a lot of investigations; many dispersion phenomena have also been assessed during recent years. However, the presence of avenue trees in street canyons and their capacity for pollutant dispersion remains partly addressed. In this study, we investigated the effects of avenue trees in urban street canyons on traffic pollutant dispersion. The dispersion of CO concentration in asymmetric street canyons was simulated under varied situations. The computational results showed a good agreement with the experimental data, and the numerical model was validated to be adequate for investigating the pollutant dispersion in street canyons. Then, the numerical simulations were extended to explore the impacts of the effects of avenue trees on CO dispersion; the results indicated that avenue trees generally increase CO concentrations in asymmetric street canyons. When the wind direction is perpendicular to the street axis, a terraced building raises pollutant concentrations at the windward wall and reduces concentration at the leeward wall on the pedestrian levels. Findings of this study are expected to provide significant insight into urban road design and strategy making for avenue tree planting, particularly under the existing worldwide sustainable low-carbon urban development.  相似文献   

3.
    
Traffic waves are phenomena that emerge when the vehicular density exceeds a critical threshold. Considering the presence of increasingly automated vehicles in the traffic stream, a number of research activities have focused on the influence of automated vehicles on the bulk traffic flow. In the present article, we demonstrate experimentally that intelligent control of an autonomous vehicle is able to dampen stop-and-go waves that can arise even in the absence of geometric or lane changing triggers. Precisely, our experiments on a circular track with more than 20 vehicles show that traffic waves emerge consistently, and that they can be dampened by controlling the velocity of a single vehicle in the flow. We compare metrics for velocity, braking events, and fuel economy across experiments. These experimental findings suggest a paradigm shift in traffic management: flow control will be possible via a few mobile actuators (less than 5%) long before a majority of vehicles have autonomous capabilities.  相似文献   

4.
    
Research on using high-resolution event-based data for traffic modeling and control is still at early stage. In this paper, we provide a comprehensive overview on what has been achieved and also think ahead on what can be achieved in the future. It is our opinion that using high-resolution event data, instead of conventional aggregate data, could bring significant improvements to current research and practices in traffic engineering. Event data records the times when a vehicle arrives at and departs from a vehicle detector. From that, individual vehicle’s on-detector-time and time gap between two consecutive vehicles can be derived. Such detailed information is of great importance for traffic modeling and control. As reviewed in this paper, current research has demonstrated that event data are extremely helpful in the fields of detector error diagnosis, vehicle classification, freeway travel time estimation, arterial performance measure, signal control optimization, traffic safety, traffic flow theory, and environmental studies. In addition, the cost of event data collection is low compared to other data collection techniques since event data can be directly collected from existing controller cabinet without any changes on the infrastructure, and can be continuously collected in 24/7 mode. This brings many research opportunities as suggested in the paper.  相似文献   

5.
Macroscopic fundamental diagram (MFD) describes the macro relationship between a network vehicle density and a network space mean flow, without requiring the mastery of complex origin to destination data. Thus, MFD provides an opportunity for the macro control of urban road network. However, most of the existing MFD control methods ignore the active role of traffic guidance in solving congestion problems. This study presents a traffic guidance–perimeter control coupled (TGPCC) method to improve the performance of macroscopic traffic networks. The method considers the optimal cumulative volume of a network as the goal and establishes a programming function according to the network equilibrium rule of traffic flow amongst multiple MFD sub-regions, which regards the minimum delay of network, as the objective. The Logit model for the compliance rate of driver route guidance is established by the stated preference survey. Moreover, the perimeter control (PC) method is proposed for adjusting the phase split of intersections. Finally, three schemes, namely, the TGPCC, PC and the method without PC and guidance are tested on a network with four well-defined MFD sub-regions. Results show that the TGPCC addresses the issue of congestion and decreases the total delay accordingly.  相似文献   

6.
Information from connected vehicles, such as the position and speed of individual vehicles, can be used to optimize traffic operations at an intersection. This paper proposes such an algorithm for two one-way-streets assuming that only a certain percentage of cars are equipped with this technology. The algorithm enumerates different sequences of cars discharging from the intersection to minimize the objective function. Benefits of platooning (multiple cars consecutively discharging from a queue) and signal flexibility (adaptability to demand) are also considered. The goal is to gain insights about the value (in terms of delay savings) of using connected vehicle technology for intersection control.Simulations are conducted for different total demand values and demand ratios to understand the effects of changing the minimum green time at the signal and the penetration rate of connected cars. Using autonomous vehicle control systems, the signal could rapidly change the direction of priority without relying on the reaction of drivers. However, without this technology a minimum green time is necessary. The results of the simulations show that a minimum green time increases the delay only for the low and balanced demand scenarios. Therefore, the value of using cars with autonomous vehicle control can only be seen at intersections with this kind of demand patterns, and could result in up to 7% decrease in delay. On the other hand, using information from connected vehicles to better adapt the traffic signal has proven to be indeed very valuable. Increases in the penetration rate from 0% up to 60% can significantly reduce the average delay (in low demand scenarios a decrease in delay of up to 60% can be observed). That being said, after a penetration rate of 60%, while the delays continue to decrease, the rate of reduction decreases and the marginal value of information from communication technologies diminishes. Overall, it is observed that connected vehicle technology could significantly improve the operation of traffic at signalized intersections, at least under the proposed algorithm.  相似文献   

7.
This paper examines the impact of traffic-flow on CO, NO2 and PM emissions at two distinct traffic junctions and evaluates the use of emission factors. The study includes three scenarios regarding pollutant emissions, which combine a field, experimental and semi-empirically estimated traffic parameters for free, interrupted and congested traffic-flow conditions. It evaluates the emission patterns for heterogeneity in traffic characteristics of both junctions. The results suggest the corrections to be made to emission factors at traffic junctions for better forecast of air quality.  相似文献   

8.
交通事故发生机理是认识道路交通事故发生过程、交通事故预防和改善交通安全的基础。文章以道路交通系统为研究对象,分析道路交通事故的形成过程,将交通事故发生机理分为驾驶行为差错类事故发生机理、外部因素突变类事故发生机理、综合性事故发生机理三类,并在此基础上绘制了道路交通事故发生机理图,同时结合国道109线兰州八盘村路段进行了实例分析。  相似文献   

9.
    
To investigate the car-following behavior under high speed driving conditions, we performed a set of 11-car-platoon experiments on Hefei airport highway. The formation and growth of oscillations have been analyzed and compared with that in low speed situations. It was found that there is considerable heterogeneity for the same driver over different runs of the experiment. This intra-driver heterogeneity was quantitatively depicted by a new index and incorporated in an enhanced two-dimensional intelligent driver model. Using both the new high-speed and the previous low-speed experimental data, the new and three existing models were calibrated. Simulation results show that the enhanced model outperforms the three existing car-following models that do not take into account this intra-driver heterogeneity in reproducing the essential features of the traffic in the experiments.  相似文献   

10.
智能交通系统是一个高科技集成系统,它综合运用各种高新技术于整个交通管理系统之中,可以系统、全面、高效地提高交通运输的安全性.文章阐述了智能交通系统在交通安全中的作用及在福州市的应用情况,指出了福州市发展智能交通的方向,以提高福州市的交通安全管理水平.  相似文献   

11.
针对交通安全现状及国内外交通预警发展现状的分析,阐明建立交通事故预警系统的必要性。分析了基于人、车、路、环境四要素的道路交通事故的成因,根据交通事故预警系统设计原则和建立预警系统的目的,采用相关理论,选用合适的交通信息采集技术,建立了交通事故预警系统。该系统包括驾驶员预警子系统、车辆防撞预警子系统、车辆状况预警子系统、道路安全预警子系统和交通气象预警子系统。  相似文献   

12.
  总被引:1,自引:0,他引:1  
The paper discusses a real-time traffic-adaptive signal control system referred to as RHODES. The system takes as input detector data for real-time measurement of traffic flow, and “optimally” controls the flow through the network. The system utilizes a control architecture that (1) decomposes the traffic control problem into several subproblems that are interconnected in an hierarchical fashion, (2) predicts traffic flows at appropriate resolution levels (individual vehicles and platoons) to enable pro-active control, (3) allows various optimization modules for solving the hierarchical subproblems, and (4) utilizes a data structure and computer/communication approaches that allow for fast solution of the subproblems, so that each decision can be downloaded in the field appropriately within the given rolling time horizon of the corresponding subproblem. The RHODES architecture, algorithms, and its analysis are presented. Laboratory test results, based on implementation of RHODES on simulation models of actual scenarios, illustrate the effectiveness of the system.  相似文献   

13.
文章基于桂林市老城区交通现状,分析了老城区交通存在的主要问题,提出了桂林市老城区分流交通保护圈规划的总体思路,并根据这一思路设计出具体的老城区分流交通保护圈规划方案,为桂林市老城区交通系统规划提供决策依据。  相似文献   

14.
    
Traffic flow pattern identification, as well as anomaly detection, is an important component for traffic operations and control. To reveal the characteristics of regional traffic flow patterns in large road networks, this paper employs dictionary-based compression theory to identify the features of both spatial and temporal patterns by analyzing the multi-dimensional traffic-related data. An anomaly index is derived to quantify the network traffic in both spatial and temporal perspectives. Both pattern identifications are conducted in three different geographic levels: detector, intersection, and sub-region. From different geographic levels, this study finds several important features of traffic flow patterns, including the geographic distribution of traffic flow patterns, pattern shifts at different times-of-day, pattern fluctuations over different days, etc. Both spatial and temporal traffic flow patterns defined in this study can jointly characterize pattern changes and provide a good performance measure of traffic operations and management. The proposed method is further implemented in a case study for the impact of a newly constructed subway line. The before-and-after study identifies the major changes of surrounding road traffic near the subway stations. It is found that new metro stations attract more commute traffic in weekdays as well as entertaining traffic during weekends.  相似文献   

15.
    
This paper investigates the local and global impact of speed limits by considering road users’ non-obedient behavior in speed selection. Given a link-specific speed limit scheme, road users will take into account the subjective travel time cost, the perceived crash risk and the perceived ticket risk as determinant factors for their actual speed choice on each link. Homogeneous travelers’ perceived crash risk is positively related to their driving speed. When travelers are heterogeneous, the perceived crash risk is class-specific: different user classes interact with each other and choose their own optimal speed, resulting in a Nash equilibrium speed pattern. With the speed choices on particular roads, travelers make route choices, resulting in user equilibrium in a general network. An algorithm is proposed to solve the user equilibrium problem with heterogeneous users under link-specific speed limits. The models and algorithms are illustrated with numerical examples.  相似文献   

16.
    
Model-based traffic prediction systems (mbTPS) are a central component of the decision support and ICM (integrated corridor management) systems currently used in several large urban traffic management centers. These models are intended to generate real-time predictions of the system’s response to candidate operational interventions. They must therefore be kept calibrated and trustworthy. The methodologies currently available for tracking the validity of a mbTPS have been adapted from approaches originally designed for off-line operational planning models. These approaches are insensitive to the complexity of the network and to the amount and quality of the data available. They also require significant human intervention and are therefore not suitable for real-time monitoring. This paper outlines a set of criteria for designing tests that are appropriate for the mbTPS task. It also proposes a test that meets the criteria. The test compares the predictions of the mbTPS in question to those of a model-less alternative. A t-test is used to determine whether the predictions of the mbTPS are superior to those of the model-less predictor. The approach is applied to two different systems using data from the I-210 freeway in Southern California.  相似文献   

17.
    
The speed-density or flow-density relationship has been considered as the foundation of traffic flow theory. Existing single-regime models calibrated by the least square method (LSM) could not fit the empirical data consistently well both in light-traffic/free-flow conditions and congested/jam conditions. In this paper, first, we point out that the inaccuracy of single-regime models is not caused solely by their functional forms, but also by the sample selection bias. Second, we apply a weighted least square method (WLSM) that addresses the sample selection bias problem. The calibration results for six well-known single-regime models using the WLSM fit the empirical data reasonably well both in light-traffic/free-flow conditions and congested/jam conditions. Third, we conduct a theoretical investigation that reveals the deficiency associated with the LSM is because the expected value of speed (or a function of it) is nonlinear with regard to the density (or a function of it).  相似文献   

18.
    
This paper presents a research on traffic modelling developed for assessing traffic and energy performance of electric systems installed along roads for dynamic charging-while-driving (CWD) of fully electric vehicles (FEVs).The logic adopted by the developed traffic model is derived from a particular simulation scenario of electric charging: a freight distribution service operated using medium-sized vans. In this case, the CWD service is used to recover the state of charge of the FEV batteries to shortly start with further activities after arrival at the depot.The CWD system is assumed to be implemented in a multilane ring road with several intermediate on-ramp entrances, where the slowest lane is reserved for the dynamic charging of authorized electric vehicles. A specific traffic model is developed and implemented based on a mesoscopic approach, where energy requirements and charging opportunities affect driving and traffic behaviours. Overtaking manoeuvres as well as new entries in the CWD lane of vehicles that need to charge are modelled according to a cooperative driving system, which manages adequate time gaps between consecutive vehicles. Finally, a speed control strategy is simulated at a defined node to create an empty time-space slot in the CWD lane, by delaying the arriving vehicles. This simulated control, implemented to allow maintenance operations for CWD that may require clearing a charging zone for a short time slot, could also be applied to facilitate on-ramp merging manoeuvres.  相似文献   

19.
    
Short-term traffic flow prediction is an integral part in most of Intelligent Transportation Systems (ITS) research and applications. Many researchers have already developed various methods that predict the future traffic condition from the historical database. Nevertheless, there has not been sufficient effort made to study how to identify and utilize the different factors that affect the traffic flow. In order to improve the performance of short-term traffic flow prediction, it is necessary to consider sufficient information related to the road section to be predicted. In this paper, we propose a method of constructing traffic state vectors by using mutual information (MI). First, the variables with different time delays are generated from the historical traffic time series, and the spatio-temporal correlations between the road sections in urban road network are evaluated by the MI. Then, the variables with the highest correlation related to the target traffic flow are selected by using a greedy search algorithm to construct the traffic state vector. The K-Nearest Neighbor (KNN) model is adapted for the application of the proposed state vector. Experimental results on real-world traffic data show that the proposed method of constructing traffic state vector provides good prediction accuracy in short-term traffic prediction.  相似文献   

20.
为降低建设项目对国省道的影响,文章从国省道两侧建设项目特点和所处交通环境的分析入手,借鉴国内外城市项目出入口管理技术,提出了6种出入口交通组织方式.以312国道昆山市境内的某一项目为例,分析其所处交通环境,对近远期出入口交通设计方式提出建议,为国省道两侧建设项目的出入口设计提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号