首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
比例导引下的机动目标跟踪   总被引:4,自引:1,他引:4  
本文在假设目标做比例导引运动,噪声为零均值的高斯白噪声的条件下,探讨了机动目标跟踪问题。把比例导引规律引入系统方程,建立了线性时变模型,用滤波-识别两步走的方法对状态进行了估计,对参数进行了识别,模拟结果表明,此方法原理是正确的,计算是可行的。  相似文献   

2.
方琼林  郭志富 《中国航海》2021,(1):75-80,105
为提高Kalman滤波算法的准确性和鲁棒性,提出一种基于自适应分数阶系统的Kalman滤波算法,设计状态噪声协方差选择的自适应机制,推导其数学过程.将该算法应用到船舶视觉跟踪中,选取不同河流的CCTV(Closed Circnit Television)船舶监控视频(包括不同情况下的内河船舶运动监控),针对不同船舶大小...  相似文献   

3.
针对水下被动目标跟踪的非高斯噪声环境和弱可观性的特点,提出了将粒子滤波算法应用于水下被动目标跟踪中的非线性问题,克服了常规的线性化方法易发散且跟踪精度低、误差大的缺点.仿真结果表明:粒子滤波算法提高了滤波的稳定性,跟踪精度优于扩展卡尔曼滤波算法和无迹卡尔曼滤波算法,收到了良好的效果,具有较高的实用价值.  相似文献   

4.
5.
声呐图像目标跟踪技术在水下UUV作战系统中具有重要意义,由于水声环境复杂,噪声干扰严重,导致声呐目标跟踪效果欠佳。本文针对UUV声呐成像特点,首先给出一种改进的Curvelet变换图像增强方法,可以有效降低声呐图像噪声并在一定程度上增强目标图像的边缘。并此基础上,提出一种基于粒子滤波的声呐目标跟踪算法以获得更为准确的目标跟踪效果。仿真结果表明,相较于传统声呐目标跟踪,该方法具有更好的目标跟踪精度以及鲁棒性。  相似文献   

6.
中心差分卡尔曼滤波是目标跟踪领域中常用的非线性滤波方法之一,但在单站的纯方位目标跟踪中,有时受观测站的运动轨迹、观测噪声等影响,中心差分卡尔曼滤波会出现滤波不稳定甚至发散的情况。针对这一问题,本文提出一种基于奇异值分解平方根的中心差分卡尔曼滤波改进方法。通过采用QR分解和奇异值分解2种不同的方式计算协方差的平方根,代替协方差矩阵参与运算,增强算法的稳定性。通过3种不同情形下的仿真结果均表明,所提方法与常规的中心差分卡尔曼滤波和经典的平方根无迹卡尔曼滤波方法相比,具有最低的均方根误差。  相似文献   

7.
针对传统的粒子滤波(PF)的多传感器目标跟踪算法存在计算量过大的问题,研究了一种基于PF和数据压缩(PF-DC)的多传感器目标跟踪算法.仿真结果表明,与传统的串行多传感器PF算法相比较,该算法可以极大的降低算法的计算量,从而有效地提高算法的实时性.  相似文献   

8.
基于扩展卡尔曼滤波的多传感器目标跟踪   总被引:2,自引:0,他引:2  
潘丽娜 《舰船电子工程》2010,30(12):71-72,154
系统所处环境的复杂性使得现在科技对目标跟踪精度的要求越来越高,而且单传感器状态的估计已经无法满足系统感知外部环境的需要。在此,研究了基于扩展卡尔曼滤波的多传感器目标跟踪方法。仿真表明,扩展卡尔曼滤波对于非线性系统跟踪的效果更好。  相似文献   

9.
基于UPF的神经网络辅助机动目标跟踪   总被引:1,自引:0,他引:1  
俞国庆  刘忠  刘晓 《舰船电子工程》2009,29(12):49-51,76
为提高机动目标跟踪性能,提出了一种神经网络辅助下的滤波方法。基于Unscented卡尔曼滤波方法,Unscented粒子滤波器(UPF)能够产生较准确的建议密度分布,因此相对于其它蒙特卡洛方法,UPF能够获得对非线性目标跟踪问题更好的近似。利用目标的机动特征建立和训练神经网络,将神经网络的输出作为加速度控制参数,用于修正目标的运动模型。仿真结果表明,与扩展卡尔曼滤波相比,神经网络辅助下的UPF具有更好的跟踪性能。  相似文献   

10.
一种基于正则粒子滤波器的目标跟踪算法   总被引:2,自引:0,他引:2  
滤波技术是实现多目标跟踪的核心技术之一.粒子滤波器是基于序贯Monte Carlo仿真方法的非线性滤波算法.本文采用正则粒子滤波算法来代替标准的粒子滤波算法.正则粒子滤波算法是基于正则再采样算法,即根据后验密度的离散分布重建它的连续分布,然后从后验分布的连续近似中采样获得再采样粒子,从而能减少粒子的退化现象.仿真结果表明,该算法的跟踪误差要小于标准粒子滤波算法,并且具有更好的跟踪性能、较高的实用价值和广泛的应用前景.  相似文献   

11.
一种改进的卡尔曼滤波定位算法研究   总被引:1,自引:0,他引:1  
王慧  王伟 《船舶工程》2006,28(4):34-38
研究了一种改进的卡尔曼滤波导航信号定位算法:通过测量每次接收机得到的伪距观测量及伪距变化量,估算出接收机的位置、速度,实现无线电导航系统的定位解算.该方法不直接使用卡尔曼滤波器来估计载体的状态,而是用滤波器来确定状态的误差,减小了运算误差,有效提高了定位精度.在进行参数估计时不需要贮存大量的测量数据,能够方便地进行动态测量数据的实时处理.该方法已经应用在导航定位解算中,仿真结果和实际应用验证了该方法具有快的收敛速度和高的定位精度.  相似文献   

12.
最优控制系统如捷联惯导系统(AHRS)都离不开状态反馈。然而系统的状态变量并不都是易于直接检测到的,这就需要状态观测器。基于减轻导航计算机计算负担和降低成本的考虑,提出Kalman滤波器的降维观测器的设计,并且讨论了误差模型的噪声补偿和降低估值误差的方法。  相似文献   

13.
In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms.  相似文献   

14.
  目的  为解决载体受到扰动时组合导航精度下降的问题,提出一种基于置信检验自适应联邦卡尔曼滤波(CC-AFKF)框架。  方法  首先,将电子罗盘(EC)、全球定位系统(GPS)与惯性导航系统(INS)相结合;其次,构建置信检验模型,有效滤除INS/GPS和INS/EC子系统中低置信度的量测值,保证量测值的准确性;最后,提出INS/GPS和INS/EC系统自适应调节因子策略,有效调整更新过程中系统噪声协方差。  结果  通过对具备INS/GPS/EC组合导航系统的水下机器人开展大量相关试验,结果表明,CC-AFKF算法相较于典型的卡尔曼滤波(KF)和联邦卡尔曼滤波(FKF)算法在位置和速度的融合精度上均能至少提高29%。  结论  研究成果可为松耦合组合导航系统的研究提供相应的方向和思路。  相似文献   

15.
首先介绍离散卡尔曼滤波的系统模型并进行理论分析,在观测噪声矢量是白噪声的情况下设计船用雷达运动目标跟踪滤波器,然后模拟实际海面跟踪目标来获得发送端数据进行滤波器的性能仿真。实验结果表明,当观测噪声协方差矩阵和实际的噪声协方差矩阵相近时,卡尔曼滤波器具有滤波精准度高、收敛速度适中及稳定性强等优点。  相似文献   

16.
A new data assimilation method for ocean waves is presented, based on an efficient low-rank approximation to the Kalman filter. Both the extended Kalman filter and a truncated second-order filter are implemented. In order to explicitly estimate past wind corrections based on current wave measurements, the filter is extended to a fixed-lag Kalman smoother for the wind fields. The filter is tested in a number of synthetic experiments with simple geometries. Propagation experiments with errors in the boundary condition showed that the KF was able to accurately propagate forecast errors, resulting in spatially varying error correlations, which would be impossible to model with time-independent assimilation methods like OI. An explicit comparison with an OI assimilation scheme showed that the KF also is superior in estimating the sea state at some distance from the observations. In experiments with errors in the driving wind, the modeled error estimates were also in agreement with the actual forecast errors. The bias in the state estimate, which is introduced through the nonlinear dependence of the waves on the driving wind field, was largely removed by the second-order filter, even without actually assimilating data. Assimilation of wave observations resulted in an improved wave analysis and in correction of past wind fields. The accuracy of this wind correction depends strongly on the actual place and time of wave generation, which is correctly modeled by the error estimate supplied by the Kalman filter. In summary, the KF approach is shown to be a reliable assimilation scheme in these simple experiments, and has the advantage over other assimilation methods that it supplies explicit dynamical error estimates.  相似文献   

17.
近年来,世界各国对海洋资源的探索不断深入,为了开发海洋丰富的化石燃料等自然资源,世界上的发达国家建设了大量的海洋工程,同时,对海上作业平台和舰船的定位精度和稳定性的要求越来越高。动力定位系统随时受到海上环境的干扰作用力,是一个非线性运动系统,借助自身推进力抵消环境中的干扰作用力,干扰作用力可以分为低频和高频干扰,因此,干扰作用力的滤波在船舶动力定位系统具有重要意义。本文重点介绍一种Kalman滤波算法,基于船舶动力系统的运动模型,研究了动力定位系统的干扰作用力滤波流程。  相似文献   

18.
  目的  针对多自主水下航行器(AUV)上装备的惯性导航系统(INS)和多普勒速度计程仪(DVL)失效或未配备的情况,结合传统的扩展卡尔曼滤波(EKF)估计,提出一种基于双模型的协同定位方法。  方法  建立相对运动模型和双领航状态空间模型,通过水声通信,利用相对运动模型估计跟随AUV的速度信息,再应用双领航模式的多AUV协同定位状态空间模型,进一步提高协同定位系统的鲁棒性和准确性,利用海试数据进行半实物仿真验证。  结果  结果表明,基于双模型的主从式多AUV协同定位方法,能够在跟随AUV上没有INS和DVL的情况下,实时估计跟随AUV的位置。  结论  该方法能够保障协同定位系统定位精度在允许的范围内,降低多AUV协同定位系统的成本。  相似文献   

19.
定位精度对载体至关重要.提高定位精度有2种方式:一是增加高精度导航设备;二是利用数据处理方法.水下载体缺乏高精度的导航设备,但其又需要在水下保持长时间的精确航行.通过建立高精度的海流数据库,然后利用数据融合算法对水下导航信息进行处理来获得高精度的位置信息,该数据融合算法实质是基于海流数据库的Kalman 滤波.通过大量的仿真实验和海试证明,该算法具有很强的实用性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号