首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study formed part of the Northeast Water project (NEW project) which dealt with physical, geophysical and biological processes in the Northeast Water Polynya off Northeast Greenland. This was part of the International Arctic Polynya Programme (IAPP). The diatom composition of the water masses, sea ice and melt ponds was analysed to show the relationship between ice and the water column near the ice with regard to the origin and fate of the cells in the ice and melt ponds. Fragilariopsis oceanica, Fragiliria sp. I and Chaetoceros socialis usually dominated the phytoplankton, while the ice and melt pond samples showed a wide range of assemblages, with different single-celled pennates and two undescribed species, Navicula sp. 1 and Nitzschia sp. 1 often dominant. Planktonic algae in sea ice can be released into the water column during ice break-up and melt, thus contributing to the spring bloom in the water column, if the timing of the release and the species composition are correct. The number of different ice algal assemblages supports the theory that cells originated from the water column, the benthos and freshwater. In addition, differential growth in the sea ice or melt ponds often altered the relative abundance of species in comparison with what is usually found in their original habitat. However, many of the cells in the ice and melt ponds were dead (empty frustules), making it difficult to determine whether the cells had actually lived in these habitats.  相似文献   

2.
One of the most basic paradigms in marine ecology is the “Sverdrup mechanism,” where the spring bloom is retarded if the surface mixed layer is too deep, due to the algae being mixed vertically out of the euphotic layer. A similar mechanism may operate in vertically homogeneous water over a small shallow area, surrounded by deep waters, if the horizontal exchange is sufficiently intense. In systems with inter-annual variations in the horizontal exchange rate, this may induce inter-annual variations in the timing and intensity of the spring bloom. A numerical primary production model with circular symmetry and prescribed horizontal exchange rate is developed. Using the Faroe Shelf as an example, the model and observations show that the timing and intensity of the spring bloom in the shallow parts of the system may be critically dependent upon the rate of the horizontal exchange. Numerical experiments confirm that the effect of horizontal exchange on the spring bloom is less pronounced for banks than for shelf systems around islands of similar scales, and that the effect increases in importance as the horizontal scale is reduced.  相似文献   

3.
An upgraded and revised physically–biologically coupled, nested 3D model with 4 km grid size is applied to investigate the seasonal carbon flux and its interannual variability. The model is validated using field data from the years for which the carbon flux was modelled, focussing on its precision in space and time, the adequacy of the validation data, suspended biomass and vertical export. The model appears to reproduce the space and time (± 1 week and 10 nautical miles) distribution of suspended biomass well, but it underestimates vertical export of carbon at depth. The modelled primary production ranges from 79 to 118 g C m 2 year 1 (average 93 g C m 2 year 1) between 4 different years with higher variability in the ice-covered Arctic (± 26%) than in the Atlantic (± 7%) section. Meteorological forcing has a strong impact on the vertical stratification of the regions dominated by Atlantic water and this results in significant differences in seasonal variability in primary production. The spatially integrated primary production in the Barents Sea is 42–49% greater during warm years than the production during the coolest and most ice-covered year.  相似文献   

4.
A new coupled ice–ocean ecosystem model that links the pelagic and ice ecosystems was used to clarify the role of ice algae in ice-covered ocean ecosystems. The model was applied to Lake Saroma (Hokkaido, Japan) in 1992. Comparison of the model's results with observational data confirmed that the model reproduced the behavior of the ecosystem with acceptable accuracy during the period from winter to spring. The primary production of the ice algae is effectively transported into the pelagic system by means of physical releasing effects: brine convection, ice melting and freezing, and diffusion generated at the bottom of the ice. Ice algae released from the ice are rapidly exported because of their high sinking speed and the shallow depth of Lake Saroma. For this reason, the zooplankton in Lake Saroma cannot graze these released algae. However, zooplankton actively graze the ice algae living along the bottom of the ice. These results show that, before their release, ice algae play an important role as a food source for overwintering zooplankton. A sensitivity analysis revealed a positive correlation between the sinking speed of the released ice algae and the magnitude of the spring bloom by pelagic phytoplankton, and that the time when secondary production becomes active is an important factor in the linkage between these two algal populations.  相似文献   

5.
Changes in the thermal, physical and optical properties of the snow–sea ice system and feedbacks between various temporal and spatial scales affect accumulation of microalgae at the sea ice bottom and are the focus of this research. During the spring transition period, May 4 to June 9, 2002, we closely monitored atmospheric conditions and properties of the snow–sea ice system, including thermal, physical and optical properties of the snow cover (e.g., temperature, grain size, light attenuation), ice thickness and salinity, and biomass of bottom ice algae. Results show that snowdrift size averaged 31.2 by 10.6 m with a depth range of 2 to 45 cm. Snowpacks also varied in age, distinguished by coincident peaks of snow salinity and grain size and a lower PAR extinction coefficient. Spatial variability of the snowpack was superimposed by temporal variability associated with seasonal snow–ice melt and wind redistribution of snow. Maximum biomass of ice algae was observed under intermediate snow covers. Under thin snow covers, algae biomass declined steadily coincident with seasonal warming and desalination of the ice cover. Under thick snow covers, algae biomass was negatively correlated with snow depth. These results suggest that thin snow covers were associated with a thermal effect causing sloughing of algae, whereas under deep snow, algae were still light limited and thermally insulated from the warming atmosphere. Our results highlight the importance of snow cover history on the sea ice system operating below. Furthermore, in the context of current climate change scenarios, shifts in snow depth would result in decreases of ice algae biomass.  相似文献   

6.
A major objective of the Palmer Long Term Ecological Research (Palmer LTER) project is to obtain a comprehensive understanding of the various components of the Antarctic marine ecosystem. Phytoplankton production plays a key role in this so-called high nutrient, low chlorophyll environment, and factors that regulate production include those that control cell growth (light, temperature, and nutrients) and those that control cell accumulation rate and hence population growth (water column stability, grazing, and sinking). Sea ice mediates several of these factors and frequently conditions the water column for a spring bloom which is characterized by a pulse of production restricted in both time and space. This study models the spatial and temporal variability of primary production within the Palmer LTER area west of the Antarctic Peninsula and discusses this production in the context of historical data for the Southern Ocean. Primary production for the Southern Ocean and the Palmer LTER area have been computed using both light-pigment production models [Smith, R.C., Bidigare, R.R., Prézelin, B.B., Baker, K.S., Brooks, J.M., 1987. Optical characterization of primary productivity across a coastal front. Mar. Biol. (96), 575–591; Bidigare, R.R., Smith, R.C., Baker, K.S., Marra, J., 1987. Oceanic primary production estimates from measurements of spectral irradiance and pigment concentrations. Global Biogeochem. Cycles (1), 171–186; Morel, A., Berthon, J.F., 1989. Surface pigments, algal biomass profiles and potential production of the euphotic layer—relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr. (34), 1545–1562] and an ice edge production model [Nelson, D.M., Smith, W.O., 1986. Phytoplankton bloom dynamics of the western Ross Sea ice edge: II. Mesoscale cycling of nitrogen and silicon. Deep-Sea Res. (33), 1389–1412; Wilson, D.L., Smith, W.O., Nelson, D.M., 1986. Phytoplankton bloom dynamics of the Western Ross Sea ice edge: I. primary productivity and species-specific production. Deep-Sea Res., 33, 1375–1387; Smith, W.O., Nelson, D.M., 1986. Importance of ice edge phytoplankton production in the Southern Ocean. BioScience (36), 251–257]. Chlorophyll concentrations, total photosynthetically available radiation (PAR) and sea ice concentrations were derived from satellite data. These same parameters, in addition to hydrodynamic conditions, have also been determined from shipboard and Palmer Station observations during the LTER program. Model results are compared, sensitivity studies evaluated, and productivity of the Palmer LTER region is discussed in terms of its space time distribution, seasonal and interannual variability, and overall contribution to the marine ecology of the Southern Ocean.  相似文献   

7.
Spring blooms of bottom ice algae are a common feature of landfast congelation ice in polar regions. Because ice algae are usually associated with a substrate, their population dynamics can be followed with considerable confidence. Although ice algal dynamics are closely related to irradiance, their dynamics and distributions are influenced by other abiotic and biotic factors. Ice algal abundance varies horizontally over all scales examined. Factors such as grazing and nutrient availability may contribute to local and geographic differences. Loss terms for most sea ice assemblages are largely unquantified. Ice algal biomass is most concentrated near the ice-water interface in spring.Environmental factors affecting ice algal abundance and productivity are considered here, emphasizing recent results from several well-studied sites. Biomass accumulation, growth rates and productivity have been documented for spring blooms of bottom interstitial and sub-ice assemblages. On an areal basis biomass accumulation in bottom ice assemblages can be comparable with planktonic systems. At low ambient temperatures and irradiances average specific growth rates (≤ 0.25 d−1) and production rates (≤ 1.0 mg C mg Chl−1 h−1) for ice algae are low. Current methods of measuring productivity are compared. Results are consistently low but variable with little systematic difference among them. At present, apparent differences in productivity between bottom ice assemblages in the Arctic and Antarctic, or among different antarctic assemblages, are so confounded by methodological and other sources of variability that no firm differences can be detected.  相似文献   

8.
Analysis of sea ice cover, runoff and air temperature observations in Hudson Bay shows marked interannual variability. This variability is thought to play a major role in determining overall productivity of the coastal ecosystem by changes to river plume extent, under-ice light conditions and nutrient levels during spring. Extensive field work off the Great Whale River in southeastern Hudson Bay has shown the importance of freshwater discharge, sea ice cover and meteorological forcing on the production of under-ice microalgae and the success of first feeding in fish larvae.Recent global climate model (GCM) results for a doubling of present atmospheric carbon dioxide indicate increases of both air temperature and precipitation in the Hudson Bay area. Predictions based on GCM results are used to estimate future changes to the sea ice and runoff regime. Sea ice breakup in the offshore is predicted to occur about one month earlier than presently. Estimates of the spring freshet in the Great Whale River indicate it will also advance by approximately one month. Onset of the spring freshet will occur about one month before Hudson Bay ice breakup, similar to present. A predicted reduction of about 35% in maximum sea ice thickness will lead to an increase in the ice-ocean interface irradiance and a decrease in melt water input to the Hudson Bay surface waters. These results are used in a discussion of potential effects of global climate change on northern coastal marine environments.  相似文献   

9.
Our goal is the study of interactions between sea ice and ocean and of their influence on planktonic communities. We use a physical model which includes explicitly melting dynamics and mixed-layer physics. A one-dimensional model of the water column with a k-1 turbulent closure is applied. The sea-ice model is the one proposed by Semtner (1976); we add a parameterization of leads. We enlighten the importance, in this kind of model, of the sharing of the energy between lateral and basal meltings. The biological model comprises two state variables: phytoplankton and zooplankton biomasses. Melting induces a persistent shallow mixed layer and thus appropriate conditions for primary production. If ice melting is present, high biomasses are possible even with high losses. The absence of ice nearly forbids a massive bloom to form. Some sensitivity studies have shown that grazing pressure is a key factor governing the evolution of biomasses. The biomasses are also sensitive to little modifications of the photosynthetic production. The initial amount of phytoplankton or the presence of ice algae seems to be of lesser importance.  相似文献   

10.
The strait between Novaya Zemlya and Frans Josef Land, here called the Barents Sea Exit (BSX) is investigated using data obtained from a current-meter array deployed in 1991–1992, and two numerical models (ROMS and NAME). Combining the observations and models the net volume flux towards the Arctic Ocean was estimated to 2.0 ± 0.6 Sv (1 Sv = 106 m3s? 1). The observations indicate that about half of this transport consists of dense, Cold Bottom Water, which may penetrate to great depths and contribute to the thermohaline circulation. Both models give quite similar net transport, seasonal variations and spatial current structures, and the discrepancies from the observations were related to the coarse representation of the bottom topography in the models. Also the models indicate that actual deployment did not capture the main in- and outflows through the BSX. A snapshot of the hydrographic structure (CTD section) indicates that both models are good at reproducing the salinity. Nevertheless, they react differently to atmospheric cooling, although the same meteorological forcing was applied. This may be due to the different parameterisation of sea ice and that tides were included in only one of the models (ROMS). Proxies for the heat transport are found to be small at the BSX, and it can not be ruled out that the Barents Sea is a heat sink rather than a heat source for the Arctic Ocean.  相似文献   

11.
An empirical algorithm has been developed to compute the sea surface CO2 fugacity (fCO2sw) in the Bay of Biscay from remotely sensed sea surface temperature (SSTRS) and chlorophyll a (chl aRS) retrieved from AVHRR and SeaWiFS sensors, respectively. Underway fCO2sw measurements recorded during 2003 were correlated with SSTRS and chl aRS data yielding a regression error of 0.1 ± 7.5 µatm (mean ± standard deviation). The spatial and temporal variability of air–sea fCO2 gradient (ΔfCO2) and air–sea CO2 flux (FCO2) was analyzed using remotely sensed images from September 1997 to December 2004. An average FCO2 of ? 1.9 ± 0.1 mol m? 2 yr? 1 characterized the Bay of Biscay as a CO2 sink that is suffering a significant long-term decrease of 0.08 ± 0.05 mol m? 2 yr? 2 in its capacity to store atmospheric CO2. The main parameter controlling the long-term variability of the CO2 uptake from the atmosphere was the air–sea CO2 transfer velocity (57%), followed by the SSTRS (10%) and the chl aRS (2%).  相似文献   

12.
The large quantities of particles delivered by the Mackenzie River to the coastal Beaufort Sea (Arctic Ocean) have implications for the spatial distribution, composition and productivity of its bacterial communities. Our objectives in this study were: (1) to assess the contribution of particle-associated bacteria (fraction  3 µm) to total bacterial production and their relationships with changing environmental conditions along a surface water transect; (2) to examine how particle-based heterotrophy changes over the annual cycle (Nov 2003–Aug 2004); and (3) to determine whether particle-associated bacterial assemblages differ in composition from the free-living communities (fraction < 3 µm). Our transect results showed that particle-associated bacteria contributed a variable percentage of leucine-based (BP-Leu) and thymidine-based (BP-TdR) bacterial production, with values up to 98% at the inshore, low salinity stations. The relative contribution of particle-associated bacteria to total BP-Leu was positively correlated with temperature and particulate organic material (POM) concentration. The annual dataset showed low activities of particle-associated bacteria during late fall and most of the winter, and a period of high particle-associated activity in spring and summer, likely related to the seasonal inputs of riverine POM. Results from catalyzed reporter deposition for fluorescence in situ hybridization (CARD-FISH) confirmed the dominance of Bacteria and presence of Archaea (43–84% and 0.2–5.5% of DAPI counts, respectively), which were evenly distributed throughout the Mackenzie Shelf, and not significantly related to environmental variables. Denaturing gradient gel electrophoresis (DGGE) revealed changes in the bacterial community structure among riverine, estuarine and marine stations, with separation according to temperature and salinity. There was evidence of differences between the particle-associated and free-living bacterial assemblages at the estuarine stations with highest POM content. Particle-associated bacteria are an important functional component of this Arctic ecosystem. Under a warmer climate, they are likely to play an increasing role in coastal biogeochemistry and carbon fluxes as a result of permafrost melting and increased particle transport from the tundra to coastal waters.  相似文献   

13.
Continuous measurements of the surface water CO2 partial pressure (pCO2) and the chlorophyll a fluorescence were performed in the Baltic Sea using a fully automated measurement system deployed on a cargo ship. The ship commuted regularly at two day intervals between the Mecklenburg Bight (Luebeck) and the Gulf of Finland (Helsinki). The pCO2 data collected during June 2003 and September 2004 were used to identify biological production events such as the spring bloom and the midsummer cyanobacteria bloom in five different sub-regions. To quantify the net biomass production, the decrease of the total CO2, NCT (normalized to a uniform alkalinity), during the production periods was calculated using the pCO2, temperature and salinity records and the mean alkalinity. Taking into account the CO2 air/sea exchange and the formation of dissolved organic carbon, a simple mass balance yielded the net production of particulate organic carbon which represents the total biomass. The chlorophyll a concentrations obtained from the fluorescence data showed peaks that in most cases coincided with the production maxima and thus supported the interpretation of the pCO2 data. The production during both the spring bloom (2004) and the midsummer nitrogen fixation period (2003) increased by a factor of about three from the southwest to the northeast. For the spring bloom our estimates were significantly higher than those based on the winter nutrient supply and Redfield C / N and C / P ratios. This indicated the existence of additional nutrient sources such as dissolved organic nitrogen, early nitrogen fixation and preferential P mineralization. Midsummer NCT minima were observed only in 2003 and used to quantify the nitrogen fixation activity and to characterize its interannual variability.  相似文献   

14.
The biological production characteristics of the Rhodes and western Ionian basins of the eastern Mediterranean are studied by a one-dimensional, coupled physical–biological model. The biological model involves single aggregated compartments of phytoplankton, zooplankton, detritus as well as ammonium and nitrate forms of the inorganic nitrogen. It interacts with the physical model through the vertical eddy diffusivity which is calculated using the Mellor–Yamada level 2.5 turbulence parameterization. The model simulations demonstrate the importance of the contrasting physical oceanographic characteristics of these two basins on affecting their yearly planktonic structures. The annual primary production in the Rhodes basin is estimated as 97 g C m2 yr−1 which is comparable with the northwestern Mediterranean. The western Ionian basin, on the contrary, possesses only 10% of the Rhodes' productivity and therefore represent a most oligotrophic site in the eastern Mediterranean. The Rhodes basin reveals a strong bloom in early spring, typically in March, a weaker bloom in early winter, typically in January, and a subsurface production below the seasonal thermocline during summer. This structure is slightly modified in the western Ionian basin, and the early winter and early spring blooms are merged to cover the entire winter. These results are supported favorably by the available observations both in their magnitudes and timing.  相似文献   

15.
Surfical sediments within Corunna Lake, a moderate size Intermittently Closed and Open Lake Lagoon (ICOLL), were examined for solid phase nutrient concentrations (TN, TP, TOC,) and solute exchange rates between the sediment and water column (O2, NO3–N, NH4–N, FRP, and N2). The surfical sediments in Corunna Lake contained high concentrations of TN (5 mg/g dry mass), total phosphorus (0.6 mg/g dry mass), and TOC (~ 5% dry mass). The carbon stable isotope ratio (δ13C) and TOC:TN ratios (δ13C ~ ? 24, TOC:TN ~ 11–14) demonstrated that the composition of the organic matter in the sediment was a mixture derived primarily of degraded planktonic matter. The close association between TP and Fe concentrations highlighted the potential role Fe plays in mediating Filterable Reactive Phosphorus (FRP) concentrations in the water column of Corunna Lake. In situ benthic chamber incubations were used to measure benthic fluxes. Solute exchange rates between the sediment and water column in Corunna Lake were similar to other reported studies (O2 = ? 469 to ? 1765 µmol m? 2 h? 1, NH4–N = 0.1–63 µmol m? 2 h? 1, NO2/NO3–N = 0 µmol m? 2 h? 1, FRP = ? 4–1.6 µmol m? 2 h? 1and N2 = 12–356 µmol m? 2 h? 1). As more carbon was deposited and mineralized the efficiency of the bacterial population to denitrify nitrogen in the sediment decreases. The linkage between land use and benthic biogeochemistry was also explored. A dairy farm exists in the middle catchment of Corunna Lake, and the receiving bay sediment consistently demonstrated the highest oxygen consumption rates in winter and spring (? 1408 µmol m? 2 h? 1 in winter, ? 1691 µmol m? 2 h? 1 in spring) and lowest denitrification efficiencies during summer (~ 3%). Nitrate/nitrite fluxes were not observed during any of the chamber incubations, with the concentrations of nitrate/nitrite being below detection limits (< 10 μg/L). Seasonal changes influenced the rates of solute exchange between the sediment and water column. Critical measures of solute exchange for NH4–N and biogenic N2 indicated that seasonal temperature changes play a significant role in mediating the reaction rates of sedimentary based biogeochemical processes. Measurable FRP fluxes were small but greater in the benthic sediments which received higher carbon inputs. Sediments have a high capacity to adsorb P which is released as sediment oxygen demand increases as a result of increases in labile carbon loads.  相似文献   

16.
Hydrographic surveys in three consecutive seasons in the Irminger Sea in 2001/2002 have revealed six physical regimes (zones) in which different surface mixing and spring re-stratification processes dominate. They are the South Irminger Current, the North Irminger Current, the Central Irminger Sea, the Polar-origin East Greenland Current, the Atlantic-origin East Greenland Current and the Reykjanes Ridge. The variations in restratification processes in particular have significant implications for the timing of shallow spring mixed layer development and therefore the timing and strength of the spring bloom. The relative roles of heat and freshwater in controlling re-stratification are examined for each hydrographic zone, and it is shown that the simplest concept of solar warming generating spring stratification is appropriate for the Irminger Current and the central Irminger Sea. However in the East Greenland Current and the Reykjanes Ridge zones, the springtime arrival of fresh or saline water at the surface dominates re-stratification and generates the earliest and strongest spring blooms of the region. In the cool fresh centre of the Irminger Sea the relatively low chlorophyll-a throughout the year cannot be wholly explained by stratification or nutrient concentrations. Details of the annual cycle in temperature, salinity, chlorophyll-a and nutrients are presented for each hydrographic zone.  相似文献   

17.
Vertical flux of particulate material was recorded with moored sediment traps during 1988/1989 in the Greenland Sea at 72°N, 10°W. This region exhibits pronounced seasonal variability in ice cover. Annual fluxes at 500 m water depth were 22. 79, 8.55, 2.39, 3.81 and 0.51 g m−2 for total flux (dry weight), carbonate particulate biogenic silicate, particulate organic carbon and nitrogen, respectively. Fluxes increased in April, maximum rates of all compounds occurred in May–June, and consistently high total flux rates of around 100 mg m−2d−1 prevailed the summer. The increasing flux of biogenic particles measured in April is indicative of an early onset of algal growth in spring. Small pennate diatoms dominated in the trap collections during April, and were still numerous during the high flux period when Thalassiosira species were the most abundant diatoms. During May–June, up to 22% of the Thalassiosira cells collected were viable-looking cells. The faecal pellet flux increased after the May–June event. Therefore we conclude that the diatoms settled as phytodetritus, most likely in rapidly sinking aggregates. From seasonal nutrient profiles it is concluded that diatoms contribute 25% to new production during spring and 50% on an annual basis. More than 50% of newly produced silicate particles are dissolved above the 500 m horizon. High new production during spring does not lead to a pronounced sedimentation pulse of organic matter during spring but elevated vertical export is observed during the entire growth period.  相似文献   

18.
《Journal of Marine Systems》2006,59(1-2):143-158
Effects of stocking density on seston dynamics and filtering and biodeposition by the suspension-cultured Zhikong scallop Chlamys farreri Jones et Preston in a eutrophic bay (Sishili Bay, northern China), were determined in a 3-month semi-field experiment with continuous flow-through seawater from the bay. Results showed that the presence of the scallops could strongly decrease seston and chlorophyll a concentrations in the water column. Moreover, in a limited water column, increasing scallop density could cause seston depletion due to scallop's filtering and biodeposition process, and impair scallop growth. Both filtration rate and biodeposition rate of C. farreri showed significant negative correlation with their density and positive relationship with seston concentration. Calculation predicts that the daily removal of suspended matter from water column by the scallops in Sishili Bay ecosystem can be as high as 45% of the total suspended matter; and the daily production of biodeposits by the scallops in early summer in farming zone may amount to 7.78 g m 2, with daily C, N and P biodeposition rates of 3.06 × 10 1, 3.86 × 10 2 and 9.80 × 10 3 g m 2, respectively. The filtering and biodeposition by suspension-cultured scallops could substantially enhance the deposition of total suspended particulate material, suppress accumulation of particulate organic matter in water column, and increase the flux of C, N and P to benthos, strongly enhancing pelagic–benthic coupling. It was suggested that the filtering-biodeposition process by intensively suspension-cultured bivalve filter-feeders could exert strong top-down control on phytoplankton biomass and other suspended particulate material in coastal ecosystems. This study also indicated that commercially suspension-cultured bivalves may simultaneously and potentially aid in mitigating eutrophication pressures on coastal ecosystems subject to anthropogenic N and P loadings, serving as a eutrophic-environment bioremediator. The ecological services (e.g. filtering capacity, top-down control, and benthic–pelagic coupling) functioned by extractive bivalve aquaculture should be emphasized in coastal ecosystems.  相似文献   

19.
The northernmost basin of the Baltic Sea, the Bothnian Bay, is ice-covered for about half the year. During this time, distinct under-ice river plumes develop, even seaward of the smallest rivers, that are substantially thicker and larger in extent than during the summer months. Wind mixing is negligible, and during late spring in April or May, the highest annual discharge occur while the sea is ice covered, thus providing conditions for the formation of extensive under-ice plumes. These plumes are characterised by high levels of trace elements (e.g., Al, Fe and Zn), organic matter (TOC and dissolved organic carbon [DOC]), nutrients and also optically active substances (colored dissolved organic matter, CDOM). The under-ice plumes provide an important pathway for undiluted transport of land-derived substances to the pelagic waters of the basin, affecting the salinity, chemistry and optical properties of coastal waters. Freshwater ice growth on the underside of an existing sea ice sheet also restricts the buildup of sea ice and under-ice algal communities, potentially in large areas along the coasts. Plume water influences the optical characteristics of coastal waters for a period of time after ice break-up, potentially affecting primary production in these areas. Furthermore, the formation of under-ice plumes potentially has a positive feedback on the ice season length due to freshening of the coastal waters (earlier freeze-up) and restricted oceanic heat flux (slower melting).  相似文献   

20.
Seasonal variations in nutrient inputs are described for the main rivers (Loire and Vilaine) flowing into the northern Bay of Biscay. The river plumes are high in N/P ratio in late winter and spring, but not in the inner plume during the summer. Conservative behavior results in most nutrients entering the estuary and eventually reaching the coastal zone. Temporal and spatial aspects of phytoplankton growth and nutrient uptake in the northern Bay of Biscay distinguish the central area of salinity 34 from the plume area. The first diatom bloom appears offshore in late winter, at the edge of the river plumes, taking advantage of haline stratification and anticyclonic “weather windows.” In spring, when the central area of the northern shelf is phosphorus-limited, small cells predominate in the phytoplankton community and compete with bacteria for both mineral and organic phosphorus. At that period, river plumes are less extensive than in winter, but local nutrient enrichment at the river mouth allows diatom growth. In summer, phytoplankton become nitrogen-limited in the river plumes; the central area of the shelf is occupied by small forms of phytoplankton, which are located on the thermocline and use predominantly regenerated nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号