首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We evaluated the phylogenetic diversity of particle-associated and free-living archaeal assemblages from the Mackenzie River and Beaufort Sea in the western Canadian Arctic. The physico-chemical characteristics of the water separated the sampling sites into three groups: riverine, coastal and marine water, which had strikingly different archaeal communities. The riverine water was characterised by the presence of Euryarchaeota mainly belonging to the LDS and RC-V clusters. The coastal water was also dominated by Euryarchaeota but they were mostly affiliated to Group II.a. The marine waters contained most exclusively Crenarchaeota belonging to the Marine Group I.1a. The results suggest that Euryarchaeota in the coastal surface layer are associated with particle-rich waters, while Crenarchaeota are more characteristic of Arctic Ocean waters that have been less influenced by riverine inputs. The particle-associated communities were similar to the free-living ones at the riverine and marine sites but differed from each other at the coastal site in terms of the presence or absence of some taxonomic groups in one of the fractions, or differences in the proportion of the phylogenetic groups. However, there was no specific archaeal group that was exclusively restricted to the free-living or particle fraction, and the diversity of the particle-associated archaeal assemblages did not significantly differ from the diversity of the free-living communities.  相似文献   

2.
Globally significant quantities of organic carbon are stored in northern permafrost soils, but little is known about how this carbon is processed by microbial communities once it enters rivers and is transported to the coastal Arctic Ocean. As part of the Arctic River-Delta Experiment (ARDEX), we measured environmental and microbiological variables along a 300 km transect in the Mackenzie River and coastal Beaufort Sea, in July–August 2004. Surface bacterial concentrations averaged 6.7 × 105 cells mL− 1 with no significant differences between sampling zones. Picocyanobacteria were abundant in the river, and mostly observed as cell colonies. Their concentrations in the surface waters decreased across the salinity gradient, dropping from 51,000 (river) to 30 (sea) cells mL− 1. There were accompanying shifts in protist community structure, from diatoms, cryptophytes, heterotrophic protists and chrysophytes in the river, to dinoflagellates, prymnesiophytes, chrysophytes, prasinophytes, diatoms and heterotrophic protists in the Beaufort Sea.Size-fractionated bacterial production, as measured by 3H–leucine uptake, varied from 76 to 416 ng C L− 1 h− 1. The contribution of particle-attached bacteria (> 3 µm fraction) to total bacterial production decreased from > 90% at the Mackenzie River stations to < 20% at an offshore marine site, and the relative importance of this particle-based fraction was inversely correlated with salinity and positively correlated with particulate organic carbon concentrations. Glucose enrichment experiments indicated that bacterial metabolism was carbon limited in the Mackenzie River but not in the coastal ocean. Prior exposure of water samples to full sunlight increased the biolability of dissolved organic carbon (DOC) in the Mackenzie River but decreased it in the Beaufort Sea.Estimated depth-integrated bacterial respiration rates in the Mackenzie River were higher than depth-integrated primary production rates, while at the marine stations bacterial respiration rates were near or below the integrated primary production rates. Consistent with these results, PCO2 measurements showed surface water supersaturation in the river (mean of 146% of air equilibrium values) and subsaturation or near-saturation in the coastal sea. These results show a well-developed microbial food web in the Mackenzie River system that will likely convert tundra carbon to atmospheric CO2 at increasing rates as the arctic climate continues to warm.  相似文献   

3.
Surface seawater samples were taken in the framework of the GEOTRACES program on “POLARSTERN” expedition ANT XXIII/1 in the Eastern Atlantic in 2005 to study the distribution of the trace elements Hg (mercury), Pb (lead), Cd (cadmium), Cu (copper), Ni (nickel), Zn (zinc), Co (cobalt), Mn (manganese), Fe (iron), and Al (aluminium). With the exception of Hg, results were compared to earlier datasets from 1989 to 1990. The particulate fraction averaged over the transect was calculated to be 49% for Cd, 23% for Mn and 50% for Fe indicating a release of these TEI's (trace elements and their isotopes) from a leachable SPM fraction in the stored and acidified samples.Total Pb concentrations ranged between 5 and 20 pmol kg? 1 in 2005 with highest values in the ITCZ (intertropical convergence zone). In 1989 Pb concentrations were twice as high in the region of the ITCZ, while by a factor of 10–15 higher values were obtained in the North Atlantic.Total Cd and Co are dominated, by different seasonal upwelling regimes (Equatorial upwelling, Guinea Dome, Angola Dome).Total Cu, Ni, Fe, Mn and Al show nearly identical concentrations in 1990 and 2005. For total manganese and aluminium strong maxima (3–4 nmol kg? 1 and 55 nmol kg? 1 respectively) are observed between 23°N and 0°, while the Fe maximum (6–9 nmol kg? 1) is located at 7°N. Total Hg concentrations ranged between 0.5 and 4.5 pmol kg? 1.  相似文献   

4.
《Journal of Marine Systems》2006,59(1-2):143-158
Effects of stocking density on seston dynamics and filtering and biodeposition by the suspension-cultured Zhikong scallop Chlamys farreri Jones et Preston in a eutrophic bay (Sishili Bay, northern China), were determined in a 3-month semi-field experiment with continuous flow-through seawater from the bay. Results showed that the presence of the scallops could strongly decrease seston and chlorophyll a concentrations in the water column. Moreover, in a limited water column, increasing scallop density could cause seston depletion due to scallop's filtering and biodeposition process, and impair scallop growth. Both filtration rate and biodeposition rate of C. farreri showed significant negative correlation with their density and positive relationship with seston concentration. Calculation predicts that the daily removal of suspended matter from water column by the scallops in Sishili Bay ecosystem can be as high as 45% of the total suspended matter; and the daily production of biodeposits by the scallops in early summer in farming zone may amount to 7.78 g m 2, with daily C, N and P biodeposition rates of 3.06 × 10 1, 3.86 × 10 2 and 9.80 × 10 3 g m 2, respectively. The filtering and biodeposition by suspension-cultured scallops could substantially enhance the deposition of total suspended particulate material, suppress accumulation of particulate organic matter in water column, and increase the flux of C, N and P to benthos, strongly enhancing pelagic–benthic coupling. It was suggested that the filtering-biodeposition process by intensively suspension-cultured bivalve filter-feeders could exert strong top-down control on phytoplankton biomass and other suspended particulate material in coastal ecosystems. This study also indicated that commercially suspension-cultured bivalves may simultaneously and potentially aid in mitigating eutrophication pressures on coastal ecosystems subject to anthropogenic N and P loadings, serving as a eutrophic-environment bioremediator. The ecological services (e.g. filtering capacity, top-down control, and benthic–pelagic coupling) functioned by extractive bivalve aquaculture should be emphasized in coastal ecosystems.  相似文献   

5.
Oil sac volume, gonad size and moulting patterns were investigated in the copepod Calanus euxinus inhabiting deep and shallow zones of the Black Sea and penetrating into the Marmara Sea. In summer the C. euxinus population in deep layers of the Black Sea was dominated by pre-diapause and diapausing postmoult copepodite stage V (CV) with small sexually undifferentiated gonads and mean lipid content of 14.1 ± 6.0% of body volume. The lipid content of deep-living females was 7.2 ± 4.2% of body volume. At the same time, intermoult and premoult CV with enlarged gonads and low lipid content (7.7 ± 5.1% of body volume) and females with oil sac volume of 1.4 ± 1.0% were found at shallow stations. Premoult CV with oil volume of 0.6 ± 0.8% and mature females with little visual evidence of substantial lipid storage dominated in the Marmara Sea. The differences in moulting patterns and oil sac volumes of C. euxinus from deep zones and shallow regions suggest that vertical migrations to the oxygen minimum zone (OMZ) are necessary for formation of large lipid reserves providing high reproductive potential of this species. On the basis of an energy balance model it was shown that under low phytoplankton concentration of about 30 μg C l 1 preadults and adults migrating to the OMZ could accumulate lipids (up to 5% of body energy content daily), in contrast to copepods constrained to shallow oxic water columns of the Black Sea and from the Marmara Sea.  相似文献   

6.
Surfical sediments within Corunna Lake, a moderate size Intermittently Closed and Open Lake Lagoon (ICOLL), were examined for solid phase nutrient concentrations (TN, TP, TOC,) and solute exchange rates between the sediment and water column (O2, NO3–N, NH4–N, FRP, and N2). The surfical sediments in Corunna Lake contained high concentrations of TN (5 mg/g dry mass), total phosphorus (0.6 mg/g dry mass), and TOC (~ 5% dry mass). The carbon stable isotope ratio (δ13C) and TOC:TN ratios (δ13C ~ ? 24, TOC:TN ~ 11–14) demonstrated that the composition of the organic matter in the sediment was a mixture derived primarily of degraded planktonic matter. The close association between TP and Fe concentrations highlighted the potential role Fe plays in mediating Filterable Reactive Phosphorus (FRP) concentrations in the water column of Corunna Lake. In situ benthic chamber incubations were used to measure benthic fluxes. Solute exchange rates between the sediment and water column in Corunna Lake were similar to other reported studies (O2 = ? 469 to ? 1765 µmol m? 2 h? 1, NH4–N = 0.1–63 µmol m? 2 h? 1, NO2/NO3–N = 0 µmol m? 2 h? 1, FRP = ? 4–1.6 µmol m? 2 h? 1and N2 = 12–356 µmol m? 2 h? 1). As more carbon was deposited and mineralized the efficiency of the bacterial population to denitrify nitrogen in the sediment decreases. The linkage between land use and benthic biogeochemistry was also explored. A dairy farm exists in the middle catchment of Corunna Lake, and the receiving bay sediment consistently demonstrated the highest oxygen consumption rates in winter and spring (? 1408 µmol m? 2 h? 1 in winter, ? 1691 µmol m? 2 h? 1 in spring) and lowest denitrification efficiencies during summer (~ 3%). Nitrate/nitrite fluxes were not observed during any of the chamber incubations, with the concentrations of nitrate/nitrite being below detection limits (< 10 μg/L). Seasonal changes influenced the rates of solute exchange between the sediment and water column. Critical measures of solute exchange for NH4–N and biogenic N2 indicated that seasonal temperature changes play a significant role in mediating the reaction rates of sedimentary based biogeochemical processes. Measurable FRP fluxes were small but greater in the benthic sediments which received higher carbon inputs. Sediments have a high capacity to adsorb P which is released as sediment oxygen demand increases as a result of increases in labile carbon loads.  相似文献   

7.
High Reynolds number flows (Re = 1 × 106, 2 × 106 and 3.6 × 106, based on the free stream velocity and cylinder diameter) covering the supercritical to upper-transition flow regimes around a two-dimensional (2D) smooth circular cylinder, have been investigated numerically using 2D Unsteady Reynolds-Averaged Navier–Stokes (URANS) equations with a standard high Reynolds number k ? ? turbulence model. The objective of the present study is to evaluate whether the model is applicable for engineering design within these flow regimes. The results are compared with published experimental data and numerical results. Although the k ? ? model is known to yield less accurate predictions of flows with strong anisotropic turbulence, satisfactory results for engineering design purposes are obtained for high Reynolds number flows around a smooth circular cylinder in the supercritical and upper-transition flow regimes, i.e. Re > 106. This is based on the comparison with published experimental data and numerical results.  相似文献   

8.
An empirical algorithm has been developed to compute the sea surface CO2 fugacity (fCO2sw) in the Bay of Biscay from remotely sensed sea surface temperature (SSTRS) and chlorophyll a (chl aRS) retrieved from AVHRR and SeaWiFS sensors, respectively. Underway fCO2sw measurements recorded during 2003 were correlated with SSTRS and chl aRS data yielding a regression error of 0.1 ± 7.5 µatm (mean ± standard deviation). The spatial and temporal variability of air–sea fCO2 gradient (ΔfCO2) and air–sea CO2 flux (FCO2) was analyzed using remotely sensed images from September 1997 to December 2004. An average FCO2 of ? 1.9 ± 0.1 mol m? 2 yr? 1 characterized the Bay of Biscay as a CO2 sink that is suffering a significant long-term decrease of 0.08 ± 0.05 mol m? 2 yr? 2 in its capacity to store atmospheric CO2. The main parameter controlling the long-term variability of the CO2 uptake from the atmosphere was the air–sea CO2 transfer velocity (57%), followed by the SSTRS (10%) and the chl aRS (2%).  相似文献   

9.
An upgraded and revised physically–biologically coupled, nested 3D model with 4 km grid size is applied to investigate the seasonal carbon flux and its interannual variability. The model is validated using field data from the years for which the carbon flux was modelled, focussing on its precision in space and time, the adequacy of the validation data, suspended biomass and vertical export. The model appears to reproduce the space and time (± 1 week and 10 nautical miles) distribution of suspended biomass well, but it underestimates vertical export of carbon at depth. The modelled primary production ranges from 79 to 118 g C m 2 year 1 (average 93 g C m 2 year 1) between 4 different years with higher variability in the ice-covered Arctic (± 26%) than in the Atlantic (± 7%) section. Meteorological forcing has a strong impact on the vertical stratification of the regions dominated by Atlantic water and this results in significant differences in seasonal variability in primary production. The spatially integrated primary production in the Barents Sea is 42–49% greater during warm years than the production during the coolest and most ice-covered year.  相似文献   

10.
As part of the Canadian Arctic Shelf Exchange Study (CASES), we investigated the spatial and seasonal distributions of viruses in relation to biotic (bacteria, chlorophyll-a (chl a)) and abiotic variables (temperature, salinity and depth). Sampling occurred in the southern Beaufort Sea Shelf in the region of the Amundsen Gulf and Mackenzie Shelf, between November 2003 and August 2004. Bacterial and viral abundances estimated by epifluorescence microscopy (EFM) and flow cytometry (FC) were highly correlated (r2 = 0.89 and r2 = 0.87, respectively), although estimates by EFM were slightly higher (FC = 1.08 × EFM + 0.12 and FC = 1.07 × EFM + 0.43, respectively). Viral abundances ranged from 0.13 × 106 to 23 × 106 ml− 1, and in surface waters were ~ 2-fold higher during the spring bloom in May and June and ~ 1.5-fold higher during July and August, relative to winter abundances. These increases were coincident with a ~ 6-fold increase in chl a during spring and a ~ 4-fold increase in bacteria during summer. Surface viral abundances near the Mackenzie River were ~ 2-fold higher than in the Mackenzie Shelf and Amundsen Gulf regions during the peak summer discharge, concomitant with a ~ 5.5-fold increase in chl a (up to 2.4 μg l− 1) and a ~ 2-fold increase in bacterial abundance (up to 22 × 105 ml− 1). Using FC, two subgroups of viruses and heterotrophic bacteria were defined. A low SYBR-green fluorescence virus subgroup (V2) representing ~ 71% of the total viral abundance, was linked to the abundance of high nucleic acid fluorescence (HNA) bacteria (a proxy for bacterial activity), which represented 42 to 72% of the bacteria in surface layers. A high SYBR-green fluorescence viral subgroup (V1) was more related to high chl a concentrations that occurred in surface waters during spring and at stations near the Mackenzie River plume during the summer discharge. These results suggest that V1 infect phytoplankton, while most V2 are bacteriophages. On the Beaufort Sea shelf, viral abundance displayed seasonal and spatial variations in conjunction with chl a concentration, bacterial abundance and composition, temperature, salinity and depth. The highly dynamic nature of viral abundance and its correlation with increases in chl a concentration and bacterial abundance implies that viruses are important agents of microbial mortality in Arctic shelf waters.  相似文献   

11.
The distribution and diet of larval and juvenile Arctic cod (Boreogadus saida) were studied during summer 2005 in the coastal Canadian Beaufort Sea. A total of 275 individuals were captured and the highest abundance was observed at station depths of 20–30 m. This corresponds well with the location of the frontal zone where the Mackenzie River plume water and open sea water meet. Diet examinations were performed on 220 Arctic cod, which were found undamaged from sampling. We observed a gradual decrease in prey number per fish and increase in prey size as larvae grew which corresponded to a shift from Rotifera and nauplii towards larger copepodid stages. However, at all sizes, the larvae remain generalists and feed on a broad range of organisms. Environmental changes due to climate warming could have a two-fold impact on fish larvae feeding in the studied region. First, the potential for increased primary production may lead to increased zooplankton production that may impact the feeding and nutrition positively. On the other hand, greater discharge of turbid water from the Mackenzie River may reduce light penetration in the water column that may negatively influence the ability of visual predators to successively forage.  相似文献   

12.
13.
The strait between Novaya Zemlya and Frans Josef Land, here called the Barents Sea Exit (BSX) is investigated using data obtained from a current-meter array deployed in 1991–1992, and two numerical models (ROMS and NAME). Combining the observations and models the net volume flux towards the Arctic Ocean was estimated to 2.0 ± 0.6 Sv (1 Sv = 106 m3s? 1). The observations indicate that about half of this transport consists of dense, Cold Bottom Water, which may penetrate to great depths and contribute to the thermohaline circulation. Both models give quite similar net transport, seasonal variations and spatial current structures, and the discrepancies from the observations were related to the coarse representation of the bottom topography in the models. Also the models indicate that actual deployment did not capture the main in- and outflows through the BSX. A snapshot of the hydrographic structure (CTD section) indicates that both models are good at reproducing the salinity. Nevertheless, they react differently to atmospheric cooling, although the same meteorological forcing was applied. This may be due to the different parameterisation of sea ice and that tides were included in only one of the models (ROMS). Proxies for the heat transport are found to be small at the BSX, and it can not be ruled out that the Barents Sea is a heat sink rather than a heat source for the Arctic Ocean.  相似文献   

14.
This paper provides an in-depth study of residual stress distributions found in stiffened steel plate structures, such as those typically used in ship hulls. The effect of stiffener spacing on the distribution of residual stress components was studied. The welding heat input was also varied between high and moderate to study the effect of heat input level on residual stress distributions. Four specimens, resembling typical stiffened steel plate structures used in ship hulls were built and tested. Steel plates of 9.5 mm thickness were stiffened by welding L127 × 76 × 9.5 steel angles. The test was completed using the neutron diffraction method. The three normal components of residual stress were obtained in this study. It was found that a lower heat input results in higher tensile residual stress and that there exists a critical stiffener spacing somewhere beyond 250 mm that creates a maximum tensile residual stress value near the welded connection.  相似文献   

15.
Downward fluxes of organic biodeposits under suspended mussel culture cause benthic impacts such as microbial mat production. Quantifying sediment erosion in these coastal ecosystems is important for understanding how fluxes of organic matter and particulates contribute to benthic–pelagic coupling. Critical shear velocity (u?), erosion rates and particle size distributions of resuspended sediment were measured at two sites; an impacted muddy site with extensive mussel culture (site 1), and a coarser sandier site with less mussel influence (site 2), using a new method for assessing sediment erosion at Tracadie Bay, Prince Edward Island in August 2003. Shear forces were generated by vertically oscillating a perforated disc at controlled frequencies. These forces correspond to shear velocity, using a re-designed and calibrated Particle Erosion Simulator. Undisturbed sediment cores obtained by divers and grab (sub-cored using a Plexiglas? cores) were exposed to shear stress to compare differences between collection methods. Microbial mats were present at site 1 which initially biostabilized sediment against erosion due to ‘armoring’ of the sediment, but onset of erosion was abrupt once these mats failed. Erosion sequences at site 2 (without mat cover) were smoother resulting in less material being eroded. Mean mass of material eroded was 47 and 23 g m? 2 min? 1 at sites 1 and 2 respectively. Mat area cover and shear velocity was strongly related. Critical shear velocities varied between 1.70 and 1.77 cm s? 1, with no obvious differences between location or collection method, so sediments from these two contrasting sites had identical mean critical shear velocities. Significant differences existed in the concentrations of chlorophyll a, colloidal and bulk carbohydrates, between mats and bare sediment from site 1. Particle sizes measured by videography of resuspended sediment at different shear velocities ranged from 100 μm (the minimum diameter capable of being detected by the system), to large mat fragments of 1700 μm for both sites. These results provide evidence of the relevance of using a portable erosion device to indicate how sediment erodability is affected by mussel–microbial relationships.  相似文献   

16.
Experimental work carried out at 1:60 scale in a wave flume assessed the pitch motion and anchor loading of 3 articulated tower installations in 50 m water depth while being exposed to north Atlantic storms with Hs of 15.2 m and Tp of 18.4 s. The three installations differ only in that their mass and buoyancy characteristics provide a natural period in pitch at equilibrium of 13 s, 20 s and 34 s respectively. It is verified that the dominant behaviour can be simulated by a relatively simple mathematical model, allowing the critical parameters of peak anchor loads and pitch angles to be calculated and extrapolated to full scale. It is demonstrated from the experimental and simulation results that the mass characteristics of a non surface piercing tower can be used to offset some of the challenges of moving to shallow water. If done correctly, it is possible to keep horizontal anchor loads under control and reduce vortex-induced transverse loading at the expense of increased pitch motions. Overall, the use of articulated tower installations in water depths of 50 m would appear to be technically feasible, even in exposed areas. The limitations on the size of such structures and the consequences of the resulting pitch accelerations and induced anchor loads are the subject of further study. It is proposed that the model verified herein can be used to further assess their potential at delivering viable wave power position mooring systems.  相似文献   

17.
Several authors have reported a strong linear relationship between daily phytoplankton production and the product of chlorophyll biomass, photic depth, and incident irradiance for a variety of estuaries. This “light · biomass” (BZpIo) formulation has been proposed as an alternative to traditional mechanistic approaches for computing phytoplankton production in numerical estuarine models. One limitation to their application in shallow systems is that the BZpIo models have been developed in relatively deep estuaries where light does not reach the bottom. We propose a nonlinear correction factor to adapt the BZpIo relationship to shallow systems where light does reach the bottom. Our function takes into account variations in incident irradiance, attenuation coefficient for light, photosynthetic efficiency, and maximum rate of photosynthesis. A series of correction polynomials are proposed for various ranges of incident irradiance, and are integrated into a single multiple polynomial which applies across all irradiance levels. Our new correction factor was tested against a 14C-based productivity dataset from shallow stations in Narragansett Bay, RI and an O2-based dataset from shallow (1.1 m) lagoon mesocosms at the University of Rhode Island. Results showed that our polynomials accurately correct BZpIo-predicted rates of production in shallow water columns. Application of our correction factor to a series of shallow water productivity datasets from the literature together with theoretical calculations show how significant the shallow water correction can be, especially in very shallow water columns with low turbidity.  相似文献   

18.
Suspended material, nutrients and organic matter in Mackenzie River water were tracked along a 300 km transect from Inuvik (Northwest Territories, Canada), across the estuarine salinity gradient in Kugmallit Bay, to offshore marine stations on the adjacent Mackenzie Shelf. All particulates measured (SPM, POC, PN, PP) declined by 87–95% across the salinity gradient and levels were generally below conservative mixing. Organic carbon content of suspended material decreased from 3.1% in the river to 1.7% in shelf surface waters while particulate C:N concurrently decreased from 17.1 to 8.6. Nitrate and silicate concentrations declined by more than 90% across the salinity gradient, with nitrate concentrations often below the conservative mixing line. Phosphate concentrations increased from 0.03 μmol/L in the river to 0.27 μmol/L over shelf waters, thereby changing the inorganic nutrient regime downstream from P to N limitation. Dissolved organic carbon decreased conservatively offshore while dissolved organic N and P persisted at high levels in the Mackenzie plume relative to river water, increasing 2.7 and 25.3 times respectively. A deep chlorophyll-a maximum was observed at two offshore stations and showed increases in most nutrients, particulates and organic matter relative to the rest of the water column. During river passage through the Mackenzie estuary, particulate matter, dissolved organic carbon and inorganic nutrients showed sedimentation, dilution and biological uptake patterns common to other arctic and non-arctic estuaries. Alternatively, inorganic content of particles increased offshore and dissolved organic N and P increased substantially over the shelf, reaching concentrations among the highest reported for the Arctic Ocean. These observations are consistent with the presence of a remnant ice-constrained (‘stamukhi’) lake from the freshet period and a slow flushing river plume constrained by sea-ice in close proximity to shore. Nutrient limitation in surface shelf waters during the ARDEX cruise contributed to the striking deep chlorophyll-a maximum at 21 m where phytoplankton communities congregated at the margin of nutrient-rich deep ocean waters.  相似文献   

19.
The spatial distribution of chlorophylls and carotenoids was recorded throughout the Gulf of Gabes (South Ionian Sea) in March 2007, and was related to patterns of the physical structure and the nutrient concentrations.Two distinct water masses were identified based on the temperature and salinity (TS) analysis: a cool and less salty Modified Atlantic Water (MAW) and a saltier Mediterranean Mixed Water (MMW). There was no significant difference in the mean nitrogen and phosphate concentrations between MMW and MAW, although the silica values were significantly higher in MAW. The Integrated chlorophyll a mean value was about 4 mg m? 2, with a maximum of 13 mg m? 2 at MAW stations.Higher Chlorophyll a records in typical MAW stations were mainly due to chlorophytes, which contributed up to 58% of the pigments concentrations in the MAW and about 46% in the MMW. The contribution of chlorophytes to total Chlorophyll a was found to be relatively stable throughout the water column. The contribution of diatoms, which were twofold higher in the MMW than in the MAW, did not exceed 17% of chlorophyll a and was mainly due to subsurface maxima. The chlorophytes, pelagophytes, prymnesiophytes and cryptophytes all together accounted for more than 77% of total chlorophyll a in the MAW and about 67% in the MMW.There were statistically significant differences between MMW and MAW in the pigment contribution of cyanobacteria and pelagophytes. These two taxa accounted for 13% and 24% of chlorophyll a respectively in the MAW and MMW indicating that these differences concerned phytoplankton classes at relatively low contributions to total chlorophyll a.  相似文献   

20.
In this study, a model for predicting chloride penetration in fly ash concrete under long-term exposure in a marine environment is developed. The empirical model was based on 2-, 3-, 4-, and 5-year investigation of concretes in a marine site. Regression analysis of the data was carried out by applying Fick's second law of diffusion to generate an empirical formula for predicting chloride concentration in concrete. The model uses the water to binder (W/B) ratio, fly ash content, distance from the concrete surface, and exposure time. Model validation revealed that the predicted chloride concentration levels were within a ±25% error margin (R2 = 0.91 ? 0.99) in the samples used to develop the model. The model was also verified using data from previous laboratory and field studies. Most predicted chloride concentration levels were within a ±30% margin of error from field samples. The model also predicted the strong effect of fly ash and W/B ratio on reducing chloride diffusion in concrete. Results clearly indicated that a high volume fly ash replacement (up to 50% by weight of binder) and a low W/B ratio will yield good chloride resistance in concrete under long-term exposure in a marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号