首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
成都地铁2号线车辆空气制动防滑保护控制策略   总被引:1,自引:0,他引:1  
制动防滑保护作为地铁车辆空气制动系统的核心组成部分之一,对车辆的制动效率发挥以及轮轨关系都有着极其重要的影响。以成都地铁2号线车辆为例,主要介绍空气制动防滑系统的硬件组成和工作原理,针对防滑保护控制策略中的参考速度选取、滑行判断指标和防滑失效控制等内容进行了探讨,并且通过滑行试验验证了列车空气制动防滑系统的有效性。  相似文献   

2.
<正>铁路车辆和汽车在地面容易打滑的状态下刹车时伴有滑行的风险,铁路车辆的滑行会引起"刹车距离增大"和"车轮踏面损伤"。"刹车距离增大"会对安全造成威胁,"车轮踏面损伤"会导致运行噪音变大和车轮寿命缩短。因此,迄今为止对滑行进行了种种研究,关于防滑刹车装置,即ABS(Anti-lock Braking System)取得了众多成果。本文主要对"编组车辆防滑控制系统"进行介绍。1编组车辆防滑控制系统的概要  相似文献   

3.
<正>铁路车辆和汽车在地面容易打滑的状态下刹车时伴有滑行的风险,铁路车辆的滑行会引起"刹车距离增大"和"车轮踏面损伤"。"刹车距离增大"会对安全造成威胁,"车轮踏面损伤"会导致运行噪音变大和车轮寿命缩短。因此,迄今为止对滑行进行了种种研究,关于防滑刹车装置,即ABS(Anti-lock Braking System)取得了众多成果。本文主要对"编组车辆防滑控制系统"进行介绍。1编组车辆防滑控制系统的概要  相似文献   

4.
介绍了城轨列车防滑系统的组成及控制原理。针对电空混合制动防滑控制时电制动切除时刻对防滑控制效果和电制动利用的影响,提出了按照滑行程度不同确定电制动切除时刻的方案。  相似文献   

5.
地铁车辆车轮踏面异常磨耗原因分析   总被引:1,自引:0,他引:1  
地铁车辆车轮踏面异常磨耗随速度提高使其运营成本逐渐增加。对于运营速度80 km/h的城轨车辆,基础制动方式基本采用踏面制动+合成闸瓦,就城轨车辆主要采用的踏面制动方式、车轮及闸瓦热负荷匹配特性、电空制动力分配比以及黏着利用等内容进行分析,结合基础制动在运用过程中遇到的实际问题及城轨车辆制动的特点展开分析讨论,探讨造成地铁车辆踏面异常磨耗的根源所在,并指出今后的研究方向。  相似文献   

6.
制动滑行控制一般分为空气制动滑行和电制动滑行两种控制方式,这两种控制方式相互配合,完成制动滑行的调整。在制动过程中,一般首先进行电制动滑行的调整,然后再进行空气制动滑行的调整。如果防滑控制出现故障,直接的结果就是列车制动距离过长,严重时可能导致擦轮。优化了两种滑行方式的触发方式以及两者之间的配合方式。试验结果表明,优化方案改善了列车的运营品质和行车安全。  相似文献   

7.
李云峰 《铁道车辆》2011,49(12):38-40,6
介绍了城轨车辆空气制动防滑系统的组成和作用原理,阐述了防滑控制方法.  相似文献   

8.
地铁车辆车轮踏面异常磨耗原因初探   总被引:1,自引:0,他引:1  
乔青峰 《铁道车辆》2011,49(6):28-32,48
运营速度80 km/h常规城轨车辆的基础制动方式基本采用踏面制动+合成闸瓦,文章针对城轨车辆合成闸瓦对车轮踏面磨耗的影响、制动力分配方式对踏面磨耗的影响、闸瓦与车轮的匹配及热负荷计算等进行了分析研究,探讨了造成地铁车辆踏面异常磨耗的原因。  相似文献   

9.
和谐号动车组制动防滑控制理论和试验   总被引:1,自引:0,他引:1  
防滑控制系统是和谐号动车组列车制动系统的核心技术之一.在列车高速运行时,具有防滑控制功能的列车制动控制系统,既能实现良好的滑行控制,又能充分利用轮轨之间的黏着作用力.主要介绍了和谐号动车组制动防滑系统,包括制动防滑系统的基本原理,硬件组成,滑行检测方法,防滑控制方法以及控制策略等.通过防滑试验验证了和谐号动车组制动防滑...  相似文献   

10.
基础制动装置是确保城市轨道交通车辆行车安全的措施之一。在分析城市轨道车辆运输特点基础上,结合城市轨道车辆基础制动装置具体类型,分析了城市轨道车辆踏面制动与盘形制动的优缺点,用有限元模拟城轨车辆车轮踏面温度场及热应力,表明速度100 km/h及以上的城轨列车基础制动不适宜采用踏面制动,指出盘形制动是城市轨道交通车辆基础制动的发展的必然趋势。  相似文献   

11.
针对城轨车辆在雨雪天气制动力不足现象进行了数据分析,发现车辆频繁出现制动力不足是由于动车电制动滑行造成的,而电制动滑行原因是雨雪天气高速、大级位制动时动车电制动需求黏着系数大于可用黏着系数。根据故障原因,提出了在雨雪模式下将50~80 km/h速度时的电制动包络线由恒力改为自然特性,并在该模式下由原来的优先发挥动车电制动策略改为网络系统将整车制动需求值的三分之二作为电制动需求值发送给动车牵引控制单元的优化策略。最后,更新网络系统与牵引控制单元软件后进行了试验验证,结果表明,优化电制动包络线和整车制动分配策略后,电制动滑行情况得到了明显改善,车辆在雨雪天制动再未出现制动力不足现象。  相似文献   

12.
利用高速轮轨关系试验台,接入制动气路设备,建立试验台与制动防滑器间的信号和指令传递,进行高速制动防滑试验。首先,采用电惯量模拟的方式,实现制动条件下试验台轨道轮的运动惯量与实车试验车辆轴重的运动惯量一致,通过控制轨道轮的圆周速度,使试验台试验车速与实车试验车速保持一致,并将其作为防滑控制系统的参考速度;然后,依据试验台制动防滑试验流程,通过干燥条件下的纯空气紧急制动试验结果对试验方法的可靠性进行验证;在此基础上,试验某动车组制动防滑器在200和300 km·h-1制动初速度及在喷水和喷防冻液条件下的制动防滑特性。结果表明:干燥条件下的纯空气紧急制动试验,实际减速度与目标减速度基本吻合,试验台试验的制动距离较实车试验的相对误差满足标准要求,试验方法可靠;喷水条件下,制动初速度为200 km·h-1时初始滑行阶段的制动率更高,而喷防冻液条件下,制动初速度为300 km·h-1时初始滑行阶段的制动率更高;喷防冻液条件下的轮轨黏着利用比喷水条件下更充分,制动率更高,制动距离更短。  相似文献   

13.
针对某市郊线路车辆轮对踏面出现的擦伤,建立故障树,列出造成轮对踏面擦伤的原因,借鉴事件记录仪所记载的数据进行分析,指出牵引系统防滑控制判断标准及空电配合策略的缺陷可能是造成车辆轮对踏面擦伤的主要原因,并提出了建议和措施.  相似文献   

14.
防滑控制系统是动车组列车的核心技术之一,在列车高速运行时,防滑控制系统既能实现良好的滑行控制,又能充分利用轮轨之间的黏着,保证列车的制动距离尽可能缩短。介绍了动车组制动防滑控制的基本原理,滑行检测方法,防滑控制方法,在恶劣天气下存在的问题和解决方案,并对优化后方案进行了探讨,提出新的改进建议。  相似文献   

15.
对地铁车辆电空混合制动方式及空气制动施加方式进行介绍,并利用有限元仿真软件对等黏着、等磨耗两种空气制动施加方式下,车轮踏面的温度变化情况进行仿真分析.通过踏面温度影响及踏面磨耗影响说明了两种空气制动施加方式的特点.  相似文献   

16.
分析了城轨车辆制动防滑系统常用的速度差、减速度等滑行检测判据的弊端,对速度差中车辆参考速度的计算和减速度检测灵敏度太高提出改进建议,对比分析2种不同防滑策略恢复时机的选择对防滑效率及参考速度的影响,结合两者优势,给出一种较优的防滑策略。  相似文献   

17.
介绍了轨道交通车辆的液压制动控制系统及具有比例阀结构的液压控制单元的组成和工作原理,并分析了轨道交通车辆滑行产生的原因。结合液压制动用低地板有轨电车的独立轮特点,以轨道车辆制动时速度差、减速度和减速度变化率为输入,压力输出系数为输出,依靠人工经验设计隶属度函数和模糊规则,设计了基于模糊控制的液压制动防滑策略,并用Matlab软件进行算法仿真,得到了预期的防滑效果,证明了模糊控制在液压防滑策略中的有效性。  相似文献   

18.
根据地铁车辆纯空气制动的工作原理,设计某无人驾驶地铁车辆的纯空气制动系统,并对调试过程中出现的滑行现象进行研究分析。通过对系统性能理论计算和实际调试的参数进行对比分析,结合防滑试验和闸瓦动力台架试验,深入分析防滑试验过程中的滑行和性能验证过程中的低速滑行之间的区别。结果表明:(1)系统性能从理论到实际都满足设计要求,且两者相比有8%左右冗余;(2)系统防滑功能可及时介入,并适时释放排制动缸压力控制车轮速度,避免车轮滑行擦伤,同时又能充分利用当前轮轨间的黏着,尽量缩短制动距离;(3)制动闸瓦的马鞍形摩擦特性导致制动到低速阶段时,表现出制动缸有一定的排气动作及部分车轴轴速变化。  相似文献   

19.
以北京地铁1号线车辆为例,分析新型地铁车辆在运营中存在的问题及其对救援的影响。事故救援多因列车走行部重要部位(排障器、安装支架)断裂、齿轮箱吊挂装置脱落等恶性事故引发,此时当事司机无力回天,专业抢险队伍的迟缓往往造成运营瘫痪。HRDA型制动控制装置实用、简便,但其制动压力信号采集却存在着隐患;SFM型城轨车辆安装了NABCO的制动控制装置、KNORR的踏面制动单元及带停放制动装置的踏面制动单元,但列车制动系统与停放制动系统却没有形成完美的组合,致使停放制动成为列车故障救援时的桎梏,因此,在新型车辆的应用中,解决好列车的停放制动,就是为运营线上列车的故障救援提供最大的方便。  相似文献   

20.
介绍滑行产生的机理以及列车制动过程中出现滑行的危害,以CRH2动车组为例,阐述高速动车组防滑系统的组成和工作原理,分析列车制动控制系统对滑行判别的依据和防滑控制的过程,明确防滑控制对列车安全运行的必要性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号