首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
浅层地下水开采对高速铁路工程的影响及对策   总被引:2,自引:2,他引:0  
研究目的:研究掌握浅层地下水开采引起的地面沉降特征及其对高速铁路工程的影响,提出针对性的防治对策与工程措施,供高速铁路勘测、设计及施工参考。研究方法:结合华北平原地面沉降情况,建立浅层地下水开采引起地面沉降的固结沉降模型。研制离心场中地基抽水的模拟和测量系统,进行了离心模型试验,测量抽水过程中粉土地基孔隙水压力和沉降的变化及分布规律,并对比分析了对不同型式桥梁的影响。研究结果:对浅层地下水开采引起的地面沉降机理进行初步分析,基于离心模型试验结果探讨了浅层抽水引起地基沉降的过程和特征,评价了地基不均匀沉降对特殊桥梁形式的影响,并提出了针对性的防治措施和对策。研究结论:浅层地下水开采造成的不均匀沉降对高速铁路工程的影响较大,需通过控制线路附近地下水开采、采取适宜的工程结构措施加以防治。  相似文献   

2.
研究目的:地下水开采是引发地面沉降的的主要原因,且集中抽水引起的不均匀沉降会对高速铁路工程造成严重危害。因此,研究水井抽水引起地基变形过程,合理估算地基沉降范围,用以指导地面沉降区内的高速铁路选线及采取可靠的防治措施。研究结论:(1)基于离心模型试验结果,采用数值模拟方法模拟分析了不同深度条件下水井抽水引起地基沉降的规律和影响范围,模拟结果表明靠近抽水位置区域的地基变形大于远离水抽水位置区域,排水引起的地基沉降量与其不均匀程度随着排水次数和沉降的增大有逐渐减小的趋势;(2)不同深度抽水时引起地面沉降过程及影响范围有所不同,浅层抽水时不均匀沉降较为严重,影响范围较小,深层抽水时地基沉降较平缓,但影响范围较大;(3)承压水单井稳定流抽水引起的地基变形影响范围与含水层渗透系数负相关,与开采量正相关,若控制地下水开采量,其变形影响范围是可以控制的,一般不会超过1 000 m;(4)当高速铁路经过地面沉降易发区时,需采取绕避集中抽水区域、封井、禁采、限采及控制地下水开采量等多重措施;(5)该研究成果可指导高速铁路选线和铁路沿线地面沉降防治等领域。  相似文献   

3.
由于地下水过量开采,京雄城际铁路沿线所经地区沉降问题显著,严重威胁铁路运营安全。本文利用Visual-Modflow和ABAUQS软件分别建立三维水文地质模型和沉降耦合数学模型,分析不同地下水开采条件下地下水位变化特征及不同地下水位变化条件下无砟轨道路基沉降特性,为制定京雄城际铁路所经地区的地下水合理开采方案提供依据。研究结果表明:随着开采时间增加,地下水位逐渐下降且下降速率逐渐减小;随着抽水速率的增加,地下水位下降高度逐渐增大且增大幅度逐渐减小,下降速率逐渐增大;土体中超静孔隙水压力随开采时间或抽水速率的增加而减小;随着开采时间的增加,路基顶面累计沉降逐渐增大,沉降速率逐渐减小;随着抽水速率的增加,累计沉降和沉降速率均增大。建议将雄县地区沿线单井抽水速率控制在1 000 m~3/d以下,以控制京雄城际铁路路基沉降。  相似文献   

4.
研究目的:针对开采地下水引起的区域地面沉降对线性工程的影响问题,以京津城际铁路为例,采用地下水三维渗流与地面沉降耦合模型计算软件—Processing Modflow,选择沿线地面沉降较严重区段,建立区域地下水流场与地面沉降的耦合模型,运用参数修正后的模型,进行地面沉降预测。研究结论:利用实测地面沉降值对模型进行验证,沉降中心位置及沉降量的模拟结果与实测结果基本吻合;设计不同的地下水开采方案,利用模型预测地面沉降,结果表明:合理压采地下水可以降低地面沉降量及沉降坡度,减缓地面沉降的不均匀性。  相似文献   

5.
华北平原地面沉降对高速铁路的影响及其对策   总被引:8,自引:2,他引:6  
研究目的:研究掌握中国华北平原区域地面沉降特征及其对高速铁路工程的影响,提出针对性的防治对策与工程措施,供高速铁路勘测、设计及施工参考。 研究方法:本文结合某高速铁路北京至济南段沿线地面沉降情况,采用统计分析方法对铁路沿线各段落的地面沉降的幅度、速率及线路坡度的改变进行了计算和预测,并参考有关规范标准计算分析了不均匀沉降对高速铁路桥梁、路基及轨道平顺性的影响。 研究结果:研究确定了华北平原地面沉降区内的地表变形特征及其对高速铁路的影响方式、影响程度,并提出了针对性的防治措施和对策。 研究结论:区域性地面沉降会改变线路坡度,同时对桥梁、路基及轨道平顺性会产生一定影响,而局部的不均匀沉降对高速铁路工程的影响相对较大,可通过控制地下水开采、合理选线、采取合理的线路坡度及适宜的工程结构措施加以防治。  相似文献   

6.
高速铁路的建设经常会遇到不同轨下基础的过渡段,过渡段由于强度、刚度、沉降等差异的存在必然会引起轨道的变形,产生不平顺。对动车组300~350 km/h运行条件下京沪高速铁路济南黄河大桥有砟—无砟过渡段进行仿真分析,结合动态测试,评估分析列车运行的安全性、轨道稳定性、动态平顺性,重点研究了桥上有砟与无砟轨道过渡轨道刚度的匹配。分析结果表明,桥上有砟轨道及过渡段轨道结构设计合理,可以满足高速铁路列车运行安全和舒适的要求。  相似文献   

7.
高速铁路沿线附近存在大量农用抽水井,对地下水的随意开采导致部分线路基础的不均匀沉降,严重威胁列车安全。本文应用PLAXIS 3D软件对高速铁路沿线一抽水井降水导致的桥梁基础沉降进行数值仿真分析。计算结果表明:抽水后场地沉降及孔隙水压力均呈漏斗状分布;抽水结束后土体最终沉降趋于稳定;桥梁桩基下半段以及桩底的正应力有所增加。本文算例中,抽水井引起的桥墩最大沉降量为2.258 mm,桥墩最大差异沉降量为0.173 mm,没有超出Q/CR 9230—2016《铁路工程沉降变形观测与评估技术规程》的规定。  相似文献   

8.
为揭示地面沉降对路基上单元板式无砟轨道平顺性的影响规律,通过建立路基上板式无砟轨道-路基有限元实体模型,充分考虑无砟轨道和路基的特性及其之间的接触方式,改变轨道结构层厚度和粘结方式,以此来进行地面沉降幅值、轨道结构层厚度和结构层间离缝对轨道不平顺的影响的研究。结果表明:地面发生沉降时,无砟轨道会发生跟随性的沉降,从上到下各层沉降值依次增大,且地面沉降幅值越大,轨道不平顺越明显;轨道结构层厚度越大,地面沉降对轨道平顺性的影响越小;轨道结构层间离缝对轨道平顺性有很大影响,尤其是无砟轨道与道床之间出现离缝时。  相似文献   

9.
高速铁路运营要满足高可靠性、高稳定性和高平顺性要求,路基沉降变形是影响轨道结构状态的主要因素。本文选取武广高速铁路代表性区段,对高速铁路路基沉降变形进行系统监测,分析了运营中无砟轨道路基沉降规律。研究表明:运营阶段高速铁路路基沉降变形量比较小,但波动较大,路堤段的总体沉降大于路堑段,过渡段的沉降值波动变化较大,直线段轨道板内侧沉降大于外侧,曲线段加设超高一侧沉降大于另一侧。研究成果对于合理安排养修,保证运营安全具有指导意义。  相似文献   

10.
桥台背路基面工后沉落导致无砟轨道底座板出现局部离缝甚至翻浆,是既有高速铁路无砟轨道过渡段典型病害现象.针对路桥过渡段线路结构及不平顺特点,构建了支承刚度和差异变形沿纵向变化的动力学分析模型;运用车辆-轨道-路基耦合动力学理论,分析了路基与桥台交界处工后差异沉降引起的无砟轨道板底座离缝,对车体垂向加速度、轮载力及减载率、...  相似文献   

11.
高速铁路沉降观测是铺设无砟轨道的基础,对轨道工程施工及轨道平顺性具有重要的影响。本文依据贵南高铁沿线地质情况,从制度建设、标准制定、人员和数据管理等方面提出探讨意见,更精准的预测线下工程最终沉降量和工后沉降,合理确定无砟轨道铺设时间,确保铺设质量。  相似文献   

12.
为了研究鲁南高铁沿线的地面沉降问题,在综合分析沿线区域地质、水文地质特征的基础上,通过整理长序列的水文监测资料及地面形变监测资料,采用常规D-InSAR和时序InSAR分析相结合的解译方法,得到了鲁南高铁沿线地面沉降的分布特征,并根据InSAR解译的地表形变离散点划分沉降段落,综合考虑不同段落的地层特征、地下水开采程度、工程建设规模等方面的因素,对引起地面沉降的原因进行研究。研究表明:济宁城区、菏泽城区地面沉降量较大,主要原因为地下水的超量开采,采空区塌陷、岩溶塌陷、深基坑降水也会造成不同程度的地表变形,产生不均匀沉降。高铁选线应避开沉降严重段落和不均匀沉降易发区,完善沿线地面的监测网络,做好地面沉降的监测及预测,制定可行的控沉措施,确保高铁的运营安全。  相似文献   

13.
京津城际铁路无砟轨道与有砟轨道过渡段结构设计   总被引:1,自引:0,他引:1  
介绍了京津城际轨道交通工程无砟轨道与有砟轨道过渡段设计采取的措施,可以实现有砟轨道刚度向无砟轨道的逐渐变化,可供其它高速铁路和客运专线轨道过渡段设计参考.  相似文献   

14.
铁路桥梁是高速铁路系统中的重要组成部分,其健康状况对车辆运营安全具有重大影响.桥墩沉降会引起无砟轨道底座板产生脱空区域,给列车安全运行埋下隐患.分析桥梁上纵连板式无砟轨道底座板随桥墩沉降产生脱空区域的机理,推导桥墩沉降量与底座板脱空区域映射关系的解析表达式,计算底座板随桥墩沉降的位移曲线,并与有限元模型结果进行对比,最...  相似文献   

15.
CRTS-Ⅰ型板式无砟轨道线路路基不均匀沉降限值研究   总被引:3,自引:0,他引:3  
基于列车—轨道耦合动力学理论,考虑无砟轨道各部件间及无砟轨道与路基间接触状态非线性,建立列车—板式无砟轨道—路基三维非线性有限元耦合动力学模型,进行自重荷载、轨道中长波随机不平顺、轨道短波随机不平顺、路基不均匀沉降荷载、无砟轨道板温度梯度荷载共同作用下,高速铁路CRTS-Ⅰ型板式无砟轨道路基不均匀沉降限值研究。结果表明:无砟轨道板温度梯度荷载对无砟轨道各部件受力均有较明显的影响,因此在进行无砟轨道线路路基不均匀沉降限值研究时有必要同时考虑无砟轨道板温度梯度荷载的影响;路基上CRTS-Ⅰ型板式无砟轨道线路的路基不均匀沉降限值由底座板疲劳破坏控制,路基不均匀沉降幅值达到7mm时无砟轨道底座板的最大拉力达到疲劳破坏限值1.674MPa,因此建议高速铁路CRTS-Ⅰ型板式无砟轨道路基的不均匀沉降限值为7mm/20m。  相似文献   

16.
高速铁路无砟轨道开通运营后出现的路基沉降超标问题,直接影响线路的平顺性。通过对无砟轨道路基沉降整治思路分析,确定了注浆抬升的整治方案。介绍了高聚物注浆的抬升机理、机具配备、施工工艺流程、关键施工要点。工程实践表明,高聚物注浆抬升技术能够实现运营高速铁路无砟轨道结构的精确抬升,恢复沉降地段线路平顺性。  相似文献   

17.
高速铁路建设经常会遇到不同轨下基础及其连接处的过渡段,由于强度、刚度、沉降等差异的存在必然会引起过渡段轨道的变形,产生不平顺[1]。通过在大西客专路桥过渡段、桥上无砟轨道、桥隧过渡段、隧道内无砟轨道布置测点,测试了动车组在160~275 km/h运行条件下轨道结构动力响应,评估了列车运行平稳性、轨道结构稳定性和振动特性。测试结果表明:列车运行稳定性指标、轨道结构稳定性和振动参数均满足相关标准要求,轨道结构动力性能参数在桥上和隧道内与路桥过渡段、桥隧过渡段差别不大,过渡段设置合理。  相似文献   

18.
印度尼西亚雅加达至万隆高速铁路采用了CRTS Ⅲ型板式无砟轨道结构,而CRTS Ⅲ型板式无砟轨道由我国自主研发,已广泛应用于我国高速铁路。结合我国高速铁路相关研究成果,通过分析雅万高铁沿线气候环境特点和无砟轨道结构设计荷载差异,深入研究雅万高铁CRTS Ⅲ型板式无砟轨道结构优化方案。研究结果表明:雅万高铁可采用普通钢筋混凝土轨道板;轨道板最大温度梯度宜取0.65℃/cm,底座整体温差宜取15℃;优化后轨道板和自密实混凝土层配筋率可降低约10%;路基地段底座分段长度宜取4~6块轨道板。  相似文献   

19.
基于既有的CRTSⅢ型板式无砟轨道结构设计体系,针对400 km/h高速铁路的运营条件,本文建立路基地段CRTSⅢ型板式无砟轨道的梁体和梁板模型,在列车荷载、温度荷载及基础变形作用下,从静力学角度对CRTSⅢ型板式无砟轨道进行适应性分析。结果表明:(1)在列车荷载作用下,CRTSⅢ型板式无砟轨道可适应400 km/h高速铁路列车动载系数的变化;(2)在列车荷载、温度荷载及基础变形的综合作用下,负温度梯度更不利于轨道部件的垂向变形,较大的基础沉降会引起自密实混凝土层与底座板出现脱空现象,在列车荷载冲击作用下将使自密实混凝土层不断的拍打底座板,应严格控制不均匀沉降的幅值不超限,建议对沉降曲线的曲率变化提出控制标准。  相似文献   

20.
浅谈无砟轨道铁路路基沉降控制   总被引:3,自引:1,他引:2  
针对无砟轨道沉降控制标准,依据国内在建及已建设完成的无砟轨道客运专线、高速铁路的设计及施工经验,从路桥分界、地基处理、填料及压实、过渡段、沉降观测及评估5个方面论述沉降控制的重要性及控制点,同时重点提出部分设计及施工注意事项。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号