首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以西安地铁3号线胡家站—石家街站区间盾构下穿陇海铁路及金花隧道工程为例,研究相关的盾构施工安全措施。陇海铁路路基采用注浆加固,线路钢轨采用扣轨加固,盾构下穿陇海铁路施工时密切监测沉降数量。工程施工实测结果表明,由于采取了合理的掘进参数及地表加固措施,盾构安全下穿了陇海铁路及金花隧道。  相似文献   

2.
北京地铁8号线天桥站—永定门外站区间隧道盾构施工需下穿地下热力管沟和污水管沟。由于盾构开控对地层扰动较大,且易引起邻近管线变形,故采用有限差分法对盾构隧道近距离下穿地下管线的施工过程进行动态模拟,计算分析了盾构施工时的土体变形及管线沉降变形等情况。模拟计算结果表明,盾构施工引起的土层及管线变形在施工允许范围内,但局部管线变形值接近控制值,且热力管沟发生了不均匀沉降。对此,提出了施工控制措施和监测方案。监测结果满足施工相关要求,且与模拟计算结果吻合。  相似文献   

3.
盾构斜交下穿既有框架隧道数值模拟分析   总被引:2,自引:2,他引:0  
在城市地铁建设中,经常出现新建隧道下穿既有隧道的情况,为研究新建盾构隧道施工对既有公路框架隧道的影响,以宁波地铁1号线世纪大道站—海晏北路站区间隧道斜交下穿浅覆土市政公路框架隧道工程为依托,采用三维有限元数值分析方法,研究盾构隧道在下穿框架隧道3个阶段(盾构到达既有隧道正下方前、穿越既有隧道正下方及穿出既有隧道后)施工过程中盾构机顶进力、壁后注浆压力对于上部框架隧道沉降、侧移及扭转影响的规律,计算结果表明,在盾构到达既有隧道正下方前及穿出既有隧道后,沉降量和扭转幅度在一定范围内随顶进力和注浆压力的增大而增大;盾构下穿既有隧道正下方阶段,沉降量和扭转幅度在一定范围内随顶进力和注浆压力的增大而减小。施工过程中宜随着盾构与既有隧道位置关系的改变,及时调整各项施工技术参数,减小对上部隧道的影响,保证盾构顺利掘进。  相似文献   

4.
[目的]城市轨道交通建设中遇到越来越多的盾构穿越或近接高层建筑施工的案例,而盾构法因其特殊的施工工艺不可避免对地层产生扰动,严重时可能会影响既有建筑的结构安全,因此需要对盾构穿越过程中隧道及高层建筑的受力特性进行深入研究。[方法]依托济南地铁R2号线生产路站—历黄路站区间隧道工程,采用三维有限元数值方法对双线盾构隧道非同步斜交下穿高层建筑群桩及筏板承台基础的施工过程进行了模拟,并结合现场监测数据分析了地层位移规律、建筑物沉降的变形特征,以及施工时盾构掘进参数的控制效果。[结果及结论]双线盾构隧道先后下穿建筑群桩时,先行隧道开挖引起的地面沉降量较大,后开挖隧道对地层产生的扰动相对较小;盾构通过建筑物正下方时的沉降量最大,随着盾构的远离,其沉降逐渐减少并趋于稳定。由于高层建筑属框架结构,故在临近隧道一侧建筑体区域地层发生了沉降,而在远离隧道的建筑体区域地层呈上浮趋势,但二者的差异沉降量仍在可控范围内。  相似文献   

5.
以杭州地铁7号线建设三路站—耕文路站区间盾构下穿2号线既有建设三路站为背景,采用数值模拟的方法,研究分析新建地铁车站基坑开挖和新建区间盾构下穿既有车站结构过程中,既有车站结构和盾构隧道的变形趋势及最大沉降区域的分布概况;结合相关工程经验,提出盾构隧道下穿既有车站控制措施。  相似文献   

6.
以北京地铁十号线二期11标六里桥站—莲花桥站区间隧道为例,采用数值模拟和现场监测相结合的方法,对新建盾构隧道垂直下穿暗涵时产生的沉降进行研究,模拟盾构掘进过程中、盾构完全通过后,暗涵底部及对应地面产生的沉降,分别得到相应的沉降最大影响区域,暗涵底部最大沉降值为11.6 mm,地表最大沉降值为5.3 mm,通过现场监测与数值计算结果对比分析,二者结果均比较接近,说明数值模型的合理性。且实际监测最大值为4.7 mm,满足5 mm的控制标准,说明施工过程中采取的措施是有效合理的。  相似文献   

7.
以天津地下直径线泥水平衡盾构隧道下穿海河为工程背景,采用有限元软件建立数值计算模型,对河底加固前后盾构隧道下穿海河引起的沉降进行了数值分析。结果表明:盾构隧道下穿海河过程中隧道上覆土层沉降沿横向近似呈正态分布,盾构施工横向影响范围为30 m;隧道上覆土层沿纵向的沉降可划分为盾构接近、盾构下穿和盾构离开3个阶段;河底采取注浆加固措施可以有效控制上覆土层的沉降。现场实施效果表明该注浆加固措施切实可行。  相似文献   

8.
结合西安地铁5号线南稍门站—文艺路站盾构区间下穿地铁2号线施工实践,对盾构下穿既有运营隧道施工过程中隧道变形控制进行试验研究。通过现场施工试验及现场监测,研究分析既有隧道变形规律,提出盾构掘进施工参数动态取值范围和既有隧道变形控制技术措施,从而保证地铁2号线正常运营。  相似文献   

9.
为探究盾构下穿施工对既有隧道结构和地层的变形影响规律,以拟建的石家庄市地铁5号线下穿6线隧道为工程背景,基于几何相似比配制地层和结构模型试验材料,并设计试验监测系统。采用直径1 200 mm小型盾构机,试验模拟盾构隧道以不同深度垂直下穿既有6线隧道的施工过程,并分析下穿过程中既有6线隧道和地层土体的沉降变形规律。结果表明:随着既有隧道底部地层距盾构隧道拱顶距离的增大,地层沉降减小,盾构施工对地层的影响范围约为1.5倍洞径,显著影响区为1倍洞径;随着埋深的增大,盾构施工引起结构下方地层的沉降减小,距盾构隧道拱顶距离分别为1倍洞径和1.5倍洞径时沉降最大差值为31.25%;6线隧道结构与其下方地层产生脱空,盾尾脱出阶段发生的地层沉降占比大于80%。  相似文献   

10.
以西安地铁5号线平村站—阿房宫站区间下穿西户铁路工程为背景,通过研究分析盾构下穿过程中地表沉降特点,提出盾构施工中调整土仓压力、掘进速度、注浆参数等技术措施。监测结果表明,采取的控制技术措施可以有效减小地表沉降,保证盾构顺利穿越既有铁路。  相似文献   

11.
针对超大直径盾构隧道下穿既有地铁线路时引起的地表沉降及既有地铁沉降问题,以北京市东六环拟建隧道下穿既有北京地铁6号线为工程背景,利用有限元软件模拟盾构施工过程获得不同控制位置的变形及应力数据.结果表明:拟建盾构隧道下穿地铁6号线施工过程中,地表沉降及6号线衬砌结构沉降均在变形控制标准内且影响不大,安全风险可控;拟建盾构...  相似文献   

12.
为确保土压平衡盾构机下穿施工既有地铁运营隧道的安全,利用三维数值有限元软件精细化建模,考虑注浆压力和掌子面压力变化的影响,多工况模拟土压平衡隧道施工获得运营隧道变形规律。通过分析土压平衡盾构机下穿施工过程中的位移响应,判定上部交叉运营地铁隧道所受影响并给出合理的注浆压力和掌子面压力参数。工程实际中利用莱卡TS30监测机器人建立了自动监测系统,对运营隧道的位移进行了监测。根据计算与监测结果得到:(1)掌子面压力越大,既有隧道沉降越小,运营隧道左线仰拱沉降最大,仰拱最大沉降范围为3.4~3.7 mm;新建隧道左线线路中线所对应的地表最大沉降范围在1.9~2.1 mm之间。(2)注浆压力越大,既有隧道沉降越小,左线拱顶最大沉降范围在2. 6~3. 6 mm;新建隧道左线线路中线所对应的地表最大沉降范围在1~2. 1 mm。(3)盾构隧道在下穿运营地铁1号线过程中,邻近运营隧道拱顶最大沉降范围在2~3.5 mm,远小于10 mm,可确保运营隧道安全。(4)采用选取的注浆压力0. 3~0. 36 MPa与土仓压力0. 1~0. 13 MPa下施工,盾构隧道穿过运营隧道后,运营隧道中股道沉降最大值为0.5 mm,轨道沉降值小于10 mm,符合要求,运营隧道安全。最后,提出了相应施工对策:在盾构下穿既有隧道施工时,应减少超挖、适当选取盾构施工参数、盾构快速通过近接区和实时监测反馈施工。  相似文献   

13.
新建隧道盾构下穿施工对既有隧道影响的三维数值模拟   总被引:6,自引:2,他引:4  
采用三维有限元方法对新建隧道盾构下穿施工过程进行了动态模拟,分析了新建隧道盾构正交下穿施工对既有隧道位移、应力的影响;进而探讨了不同的隧道覆土厚度、隧道间相对距离及土体强度下,新建隧道盾构正交下穿施工对既有隧道位移的影响.结果表明:新建隧道盾构正交下穿施工引起既有隧道位移方向朝向新建隧道方向发展,既有隧道位移以纵向沉降...  相似文献   

14.
盾构隧道下穿既有铁路线路会造成铁路线路沉降变形,影响列车的正常运行。基于此,在某实际工程的基础上,对地基加固、盾构下穿过程中铁路线路沉降情况进行监测分析。结果表明:旋喷桩加固注浆施工对铁路线路影响很小,当旋喷桩加固施工完成后,主加固区施工对铁路线路影响较大;地基加固对盾构下穿时铁路线路变形控制有较好效果,隧道穿越施工期间,路基最大沉降量为36.52mm,轨面最大沉降量为15.88mm,满足规范要求。  相似文献   

15.
以新郑机场至郑州南站城际铁路盾构隧道下穿南水北调中线总干渠为例,研究下穿段盾构隧道结构、沉降、防水、加强措施、监测方案等设计关键问题,以指导盾构下穿施工。通过模拟不同工况下盾构隧道结构受力,计算确定盾构管片的配筋方案;通过三维数值模拟分析盾构下穿施工对南水北调中线总干渠的影响。考虑南水北调工程的重要性,设计中采取一系列确保总干渠安全的措施。盾构隧道安全、顺利穿越南水北调中线总干渠,各项监测数据及指标满足预期,表明本文提出设计措施有效地控制了盾构下穿施工对总干渠的影响,确保了盾构施工安全和南水北调中线总干渠安全。  相似文献   

16.
杭州至海宁城际铁路余杭高铁站~许村镇站区间盾构隧道下穿杭州运营地铁1号线区间隧道,竖向净距仅3.2m。需要研究合理控制盾构掘进地层损失率,保障地铁运营区间隧道的沉降值在安全允许范围内。为此利用FLAC3D三维有限元软件计算分析了盾构隧道施工对运营地铁区间的沉降影响。研究结果表明沉降量与地层损失率密切相关,严格控制施工过程中的地层损失率在5‰以内,可减小对已运营地铁隧道变形的影响。施工监测数据结果表明,沉降分析及控制要求是安全合理的。  相似文献   

17.
济南地铁某区间盾构隧道下穿既有京沪铁路路桥区段,为减小盾构施工对既有铁路路桥的影响,文章对盾构隧道下穿既有铁路路桥设计方案做了比选研究,并通过MIDAS有限元软件对盾构隧道施工阶段进行数值模拟,计算分析铁路路桥在盾构隧道开挖过程中产生的变形与沉降,根据数值计算的结果对施工措施提出建议。  相似文献   

18.
城市地铁双线小净距隧道下穿高压电塔,施工风险较高,研究盾构隧道近距离穿越高压电塔影响,对于保证施工过程中高压电塔及区间隧道安全稳定具有重要意义。文章以岩石地层小净距盾构区间下穿南吴线66kV高压电塔为背景,通过数值分析计算,模拟盾构下穿高压电塔施工工况,对高压电塔基础沉降进行计算分析,将计算值与地表监测值进行对比,验证计算结果,最终双线净距仅2.8m的2条隧道安全顺利通过高压电塔。  相似文献   

19.
盾构下穿地铁13号线清河高架桥地表沉降监测   总被引:3,自引:2,他引:1  
结合南水北调暗涵下穿地铁13号线清河高架桥的施工监测数据,对盾构隧道下穿既有轨道交通施工过程中地表土体和桥墩的变形情况进行分析,在施工过程中采用自动化及人工监测两种监测手段.本文重点就穿越过程中上部地表沉降和桥墩竖向位移进行分析.  相似文献   

20.
武汉长江隧道盾构下穿武九铁路沉降影响分析   总被引:7,自引:3,他引:4  
研究目的:武汉长江隧道周边工程环境复杂,其中盾构下穿既有武九铁路是该工程的难点之一.为比较准确地分析盾构下穿武九铁路的沉降影响,本文分别采用经典的Peck法和有限元法计算了盾构推进对武九铁路的沉降影响,介绍了施工中所采取的保护措施和现场监测情况,为同类工程积累了经验.研究结论:施工过程中的现场沉降监测结果大于计算结果,但未影响铁路的安全运行.由于列车运行的影响,下穿铁路引起的地表沉降槽宽度和深度均大于邻近的和平大道.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号