首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Two new detection algorithms, single-station DV (dual-variable) and dual-station CODE (COmbined Detector Evaluation) were developed earlier using 160 incidents collected along Singapore's Central Expressway (CTE). The transferability of these CTE-developed algorithms is assessed, as a case study, using 100 incidents collected from the Tullamarine Freeway and South Eastern Freeway in Melbourne, Australia. The investigation covers the differences in traffic detector systems (loop detectors versus video-based), road geometry and behaviour between drivers in Singapore and Australia. The re-calibrated application of these algorithms to freeways in Melbourne yielded a reasonably good detection performance as well as satisfying the average expected performances of seven traffic management centres surveyed in the USA. The results suggested that the detection logic of the algorithms developed for CTE possessed reasonably good transferability and are also suitable for receiving traffic inputs from video-based detectors as well as from loop detectors.  相似文献   

2.
Development of a universal freeway incident detection algorithm is a task that remains unfulfilled despite the promising approaches that have been recently explored. Incident detection researchers are realizing that an operationally successful detection framework needs to fulfill a full set of recognized needs. In this paper we attempt to define one possible set of universality requirements. Among the set of requirements, a freeway incident detection algorithm needs to be operationally accurate and transferable. Guided by the envisioned requirements, we introduce a new algorithm with potential for enhanced performance. The algorithm is a modified form of the Bayesian-based Probabilistic Neural Network (PNN) that utilizes the concept of statistical distance. The paper is divided into three main sections. The first section is a detailed definition of the attributes and capabilities that a potentially universal freeway incident detection framework should possess. The second section discusses the training and testing of the PNN. In the third section, we evaluate the PNN relative to the universality template previously defined. In addition to a large set of simulated incidents, we utilize a fairly large real incident databases from the I-880 freeway in California and the I-35W in Minnesota to comparatively evaluate the performance and transferability of different algorithms, including the PNN. Experimental results indicate that the new PNN-based algorithm is competitive with the Multi Layer Feed Forward (MLF) architecture, which was found in previous studies to yield superior incident detection performance, while being significantly faster to train. In addition, results also point to the possibility of utilizing the real-time learning capability of this new architecture to produce a transferable incident detection algorithm without the need for explicit off-line retraining in the new site. In this respect, and unlike existing algorithms, the PNN has been found to markedly improve in performance with time in service as it retrains itself on captured incident data, verified by the Traffic Management Center (TMC) operator. Moreover, the overall PNN-based framework promises potential enhancements towards the envisioned universality requirements.  相似文献   

3.
The CUSUM (cumulative sum of log‐likelihood ratio) algorithm is a detection algorithm that shows potential for the improvement of incident detection algorithms because it is designed to minimize the mean detect delay for a given false alarm constraint and it can also detect changes with different patterns. In this study, the CUSUM algorithm was applied to freeway incident detection by integrating traffic measurements from two contiguous loop detectors and the non‐stationarity of traffic flows. The developed algorithm was tested based on incident data from the PATH program, with consideration given to the impact of different geometric conditions on algorithm performance. It was also compared with two existing algorithms, in order to address the influence of traffic patterns. The evaluation results show that the CUSUM incident detection algorithm can perform equally well in comparison with the selected algorithms.  相似文献   

4.
The early warning of incidents on urban arterial roads in a congested city can reduce delay, accidents and pollutant emission. Freeway incident detection systems implemented in recent years may not be suitable for arterial incidents. Arterial incident detection is more difficult. The traffic flow on an arterial road is not conserved from the upstream end of a road link to the downstream end because urban traffic does turn in and out of side‐streets, car‐parks and local residences. Roadside friction such as kerbside parking and shopping traffic also tends to create apparent incidents which are in fact frequent and normal events. This paper develops a definition for an arterial incident and describes a case study on an arterial road in Melbourne, Australia. The study shows that detectors upstream of an incident are more useful for incident detection than downstream detectors. It also identifies occupancy and speed as the appropriate parameters to characterise and detect arterial incidents.  相似文献   

5.
Timely and accurate incident detection is an essential part of any successful advanced traffic management system. The complex nature of arterial road traffic makes automated incident detection a real challenge. Stable performance and strong transferability remain major issues concerning the existing incident detection algorithms. A new arterial road incident detection algorithm TSC_ar is presented in this paper. In this algorithm, Bayesian networks are used to quantitatively model the causal dependencies between traffic events (e.g. incident) and traffic parameters. Using real time traffic data as evidence, the Bayesian networks update the incident probability at each detection interval through two-way inference. An incident alarm is issued when the estimated incident probability exceeds the predefined decision threshold. The Bayesian networks allow us to subjectively build existing traffic knowledge into their conditional probability tables, which makes the knowledge base for incident detection robust and dynamic. Meanwhile, we incorporate intersection traffic signals into traffic data processing. A total of 40 different types of arterial road incidents are simulated to test the performance of the algorithm. The high detection rate of 88% is obtained while the false alarm rate of the algorithm is maintained as low as 0.62%. Most importantly, it is found that both the detection rate and false alarm rate are not sensitive to the incident decision thresholds. This is the unique feature of the TSC_ar algorithm, which suggests that the Bayesian network approach is advanced in enabling effective arterial road incident detection.  相似文献   

6.
Even though incident detection algorithms are designed and implemented for quickly detecting incidents, the criterion of mean detection delay has hardly been well defined and utilized in developing and evaluating incident detection algorithms. In addition, most incident detection algorithms do not have an optimal property in terms of detection delay with respect to false alarm rate. In the study presented in this paper, the incident detection problem was formulated as an optimization problem. To implement the algorithm, called the CUSUM algorithm that was derived from the optimization formulation of the incident detection problem, a simplified procedure was developed. Based on this procedure, three varieties of the CUSUM algorithm were developed and tested based on real incident data against a newly defined criterion for mean detection delay. Selected incident detection algorithms were also compared with the CUSUM algorithms. The comparison demonstrates the superiority of the CUSUM algorithms against other selected algorithms in reducing detection delay while maintaining an acceptable detection rate.  相似文献   

7.
This paper presents an application of the wavelet technique to freeway incident detection because wavelet techniques have demonstrated superior performance in detecting changes in signals in electrical engineering. Unlike the existing wavelet incident detection algorithm, where the wavelet technique is utilized to denoise data before the data is input into an algorithm, this paper presents a different approach in the application of the wavelet technique to incident detection. In this approach, the features that are extracted from traffic measurements by using wavelet transformation are directly utilized in detecting changes in traffic flow. It is shown in the paper that the extracted features from traffic measurements in incident conditions are significantly different from those in normal conditions. This characteristic of the wavelet technique was used in developing the wavelet incident detection algorithm in this study. The algorithm was evaluated in comparison with the multi-layer feed-forward neural network, probabilistic neural network, radial basis function neural network, California and low-pass filtering algorithms. The test results indicate that the wavelet incident detection algorithm performs better than other algorithms, demonstrating its potential for practical application.  相似文献   

8.
This paper addresses the transferability issue faced by many practitioners in developing an effective and efficient automatic incident detection algorithm for different freeways. An algorithm fusion procedure developed for the Central Expressway in Singapore is evaluated to demonstrate its transferability potential in detecting lane-blocking incidents along freeways in Melbourne, Australia. This study observes that the flow-based algorithm fusion options that use a set of different detection threshold values for various pre-incident traffic flow conditions possess promising transferability potential. They give a reasonably high detection rate of above 80% with false alarm rate levels below 0.2% with mean-time-to-detect values less than 150 seconds. These flow-based algorithm fusion options significantly outperform a model specifically developed for traffic conditions on freeways in Melbourne. In conclusion, this method is capable of providing an alternative to the commonly practiced methods in detecting incidents along different sites.  相似文献   

9.
A major source of urban freeway delay in the U.S. is non-recurring congestion caused by incidents. The automated detection of incidents is an important function of a freeway traffic management center. A number of incident detection algorithms, using inductive loop data as input, have been developed over the past several decades, and a few of them are being deployed at urban freeway systems in major cities. These algorithms have shown varying degrees of success in their detection performance. In this paper, we present a new incident detection technique based on artificial neural networks (ANNs). Three types of neural network models, namely the multi-layer feedforward (MLF), the self-organizing feature map (SOFM) and adaptive resonance theory 2 (ART2), were developed to classify traffic surveillance data obtained from loop detectors, with the objective of using the classified output to detect lane-blocking freeway incidents. The models were developed with simulation data from a study site and tested with both simulation and field data at the same site. The MLF was found to have the highest potential, among the three ANNs, to achieve a better incident detection performance. The MLF was also tested with limited field data collected from three other freeway locations to explore its transferability. Our results and analyzes with data from the study site as well as the three test sites have shown that the MLF consistently detected most of the lane-blocking incidents and typically gave a false alarm rate lower than the California, McMaster and Minnesota algorithms currently in use.  相似文献   

10.
In this paper, a new methodology is presented for real-time detection and characterization of incidents on surface streets. The proposed automatic incident detection approach is capable of detecting incidents promptly as well as characterizing incidents in terms of time-varying lane-changing fractions and queue lengths in blocked lanes, lanes blocked due to incidents, and incident duration. The architecture of the proposed incident detection approach consists of three sequential procedures: (1) Symptom Identification for identification of incident symptoms, (2) Signal Processing for real-time prediction of incident-related lane traffic characteristics and (3) Pattern Recognition for incident recognition. Lane traffic counts and occupancy are the only two major types of input data, which can be readily collected from point detectors. The primary techniques utilized in this paper include: (1) a discrete-time, nonlinear, stochastic system with boundary constraints to predict real-time lane-changing fractions and queue lengths and (2) a pattern-recognition-based algorithm employing modified sequential probability ratio tests (MSPRT) to detect incidents. Off-line tests based on simulated as well as video-based real data were conducted to assess the performance of the proposed algorithm. The test results have indicated the feasibility of achieving real-time incident detection using the proposed methodology.  相似文献   

11.
This paper documents a fuzzy-logic-based incident detection algorithm for signalized urban diamond interchanges. The model is capable of detecting lane-blocking incidents whose effects are manifested by patterns of deterioration in traffic conditions that require adjustments in signal control strategies. As a component of a real-time traffic adaptive control system for signalized diamond interchanges, the algorithm feeds an incident report (i.e., the time, location, and severity of the incident) to the system's optimization manager, which uses that information to determine the appropriate signal control strategy.The performance of the model was studied using a simulation of an actual diamond interchange. The simulation study evaluated the model's performance in terms of detection rate, false alarm rate, and mean time to detect. The model's performance was encouraging, and the fuzzy-logic-based approach is considered promising.  相似文献   

12.
Traffic incidents are a principal cause of congestion on urban freeways, reducing capacity and creating risks for both involved motorists and incident response personnel. As incident durations increase, the risk of secondary incidents or crashes also becomes problematic. In response to these issues, many road agencies in metropolitan areas have initiated incident management programs aimed at detecting, responding to, and clearing incidents to restore freeways to full capacity as quickly and safely as possible. This study examined those factors that impact the time required by the Michigan Department of Transportation Freeway Courtesy Patrol to clear incidents that occurred on the southeastern Michigan freeway network. These models were developed using traffic flow data, roadway geometry information, and an extensive incident inventory database. A series of parametric hazard duration models were developed, each assuming a different underlying probability distribution for the hazard function. Although each modeling framework provided results that were similar in terms of the direction of factor effects, there was significant variability in terms of the estimated magnitude of these impacts. The generalized F distribution was shown to provide the best fit to the incident clearance time data, and the use of poorer fitting distributions was shown to result in severe over‐estimation or under‐estimation of factor effects. Those factors that were found to impact incident clearance times included the time of day and month when the incident occurred, the geometric and traffic characteristics of the freeway segment, and the characteristics of each incident. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Travel time information influences driver behaviour and can contribute to reducing congestion and improving network efficiency. Consequently many road authorities disseminate travel time information on road side signs, web sites and radio traffic broadcasts. Operational systems commonly rely on speed data obtained from inductive loop detectors and estimate travel times using simple algorithms that are known to provide poor predictions particularly on either side of the peak period. This paper presents a new macroscopic model for predicting freeway travel times which overcomes the limitations of operational ‘instantaneous’ speed models by drawing on queuing theory to model the processing of vehicles in sections or cells of the freeway. The model draws on real-time speed, flow and occupancy data and is formulated to accommodate varying geometric conditions, the relative distribution of vehicles along the freeway, variations in speed limits, the impact of ramp flows and fixed or transient bottlenecks. Field validation of the new algorithm was undertaken using data from two operational freeways in Melbourne, Australia. Consistent with the results of simulation testing, the validation confirmed that the recursive model provided a substantial improvement in travel time predictions when compared to the model currently used to provide real-time travel time information to motorists in Melbourne.  相似文献   

14.
This paper explores the efficacy of the driver-based incident detection using the vehicle-to-roadside communication (VRC) system. The proliferation of vehicle tags in the US for automatic toll collection, traffic monitoring, and vehicle navigation and information systems has created an infrastructure capable of supporting a driver-based incident detection system. The research reported herein investigated the use of "activatable" vehicle tags by drivers to send an incident signal to the Traffic Management Center through VRC reader stations spaced uniformly on a highway. The simulation results showed that good detection performance was achieved even at lower levels of market penetration of vehicle tags. The results further showed that detection performance is significantly affected by the severity of the incident in terms of number of lanes closed, the spacing of the VRC reader stations, traffic volume at the time of the incident, and the reporting propensity of the traveling public.The performance of the VRC-based incident reporting system was compared to the performance of two incident detection algorithms that rely on traffic data collected through the automatic vehicle identification (AVI) system. The comparison showed that the VRC-based incident reporting system attained shorter detection times and higher detection rates under fairly similar simulated conditions. The paper also discusses issues that need further study through simulation and field experimentation of the VRC-based incident reporting system.  相似文献   

15.
The purpose of this paper is to develop and evaluate a hybrid travel time forecasting model with geographic information systems (GIS) technologies for predicting link travel times in congested road networks. In a separate study by You and Kim (cf. You, J., Kim, T.J., 1999b. In: Proceedings of the Third Bi-Annual Conference of the Eastern Asia Society for Transportation Studies, 14–17 September, Taipei, Taiwan), a non-parametric regression model has been developed as a core forecasting algorithm to reduce computation time and increase forecasting accuracy. Using the core forecasting algorithm, a prototype hybrid forecasting model has been developed and tested by deploying GIS technologies in the following areas: (1) storing, retrieving, and displaying traffic data to assist in the forecasting procedures, (2) building road network data, and (3) integrating historical databases and road network data. This study shows that adopting GIS technologies in link travel time forecasting is efficient for achieving two goals: (1) reducing computational delay and (2) increasing forecasting accuracy.  相似文献   

16.
This paper presents a real-time traffic network state estimation and prediction system with built-in decision support capabilities for traffic network management. The system provides traffic network managers with the capabilities to estimate the current network conditions, predict congestion dynamics, and generate efficient traffic management schemes for recurrent and non-recurrent congestion situations. The system adopts a closed-loop rolling horizon framework in which network state estimation and prediction modules are integrated with a traffic network manager module to generate efficient proactive traffic management schemes. The traffic network manger adopts a meta-heuristic search mechanism to construct the schemes by integrating a wide variety of control strategies. The system is applied in the context of Integrated Corridor Management (ICM), which is envisioned to provide a system approach for managing congested urban corridors. A simulation-based case study is presented for the US-75 corridor in Dallas, Texas. The results show the ability of the system to improve the overall network performance during hypothetical incident scenarios.  相似文献   

17.
This paper investigates the use of constructive probabilistic neural network (CPNN) in freeway incident detection, including model development and adaptation. The CPNN was structured based on mixture Gaussian model and trained by a dynamic decay adjustment algorithm. The model was first trained and evaluated on a simulated incident database in Singapore. The adaptation of CPNN on the I-880 freeway in California was then investigated in both on-line and off-line environments. This paper also compares the performance of the CPNN model with a basic probabilistic neural network (BPNN) model. The results show that CPNN has three main advantages over BPNN: (1) CPNN has clustering ability and therefore could achieve similarly good incident-detection performance with a much smaller network size; (2) each Gaussian component in CPNN has its own smoothing parameter that can be obtained by the dynamic decay adjustment algorithm with a few epochs of training; and (3) the CPNN adaptation methods have the ability to prune obsolete Gaussian components and therefore the size of the network is always within control. CPNN has shown to have better application potentials than BPNN in this research.  相似文献   

18.
We describe a real-time highway surveillance system (RHSS), which operates autonomously to collect statistics (speed and volume) and generates incident alerts (e.g., stopped vehicles). The system is designed to optimize long-term real-time performance accuracy. It also provides convenient integration to an existing surveillance infrastructure with different levels of service. Innovations include a novel 3-D Hungarian algorithm which is utilized for object tracking and a practical, hands-off mechanism for camera calibration. Speed is estimated based on trajectories after mapping/alignment with respect to dominant paths learned based on an evolutionary dynamics model. The system, RHSS, is intensively evaluated under different scenarios such as rain, low-contrast and high-contrast lightings. Performance is presented in comparison to a current commercial product. The contribution is innovation of new technologies that enable hands-off calibration (i.e., automatic detection of vanishing points) and improved accuracy (i.e., illumination balancing, tracking via a new 3-D Hungarian algorithm, and re-initialization of background detection on-the-fly). Results indicate the capability and applicability of the proposed system in real-time and real-world settings.  相似文献   

19.
Agent technology is rapidly emerging as a powerful computing paradigm to cope with the complexity in dynamic distributed systems, such as traffic control and management systems. However, while a number of agent-based traffic control and management systems have been proposed and the multi-agent systems have been studied, to the best of our knowledge, the mobile agent technology has not been applied to this field. In this paper, we propose to integrate mobile agent technology with multi-agent systems to enhance the ability of the traffic management systems to deal with the uncertainty in a dynamic environment. In particular, we have developed an IEEE FIPA compliant mobile agent system called Mobile-C and designed an agent-based real-time traffic detection and management system (ABRTTDMS). The system based on Mobile-C takes advantages of both stationary agents and mobile agents. The use of mobile agents allows ABRTTDMS dynamically deploying new control algorithms and operations to respond unforeseen events and conditions. Mobility also reduces incident response time and data transmission over the network. The simulation of using mobile agents for dynamic algorithm and operation deployment demonstrates that mobile agent approach offers great flexibility in managing dynamics in complex systems.  相似文献   

20.
We present a novel, off-line approach for evaluating incident detection algorithms. Previous evaluations have focused on determining the detection rate versus false alarm rate curve––a process which we argue is inherently fraught with difficulties. Instead, we propose a cost-benefit analysis where cost mimics the real costs of implementing the algorithm and benefit is in terms of reduction in congestion. We argue that these quantities are of more practical interest than the traditional rates. Moreover, these costs, estimated on training data, can be used both as a mechanism to fine tune a single algorithm as well as a meaningful quantity for direct comparisons between different types of incident detection algorithms. We demonstrate our approach with a detailed example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号