首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
依据一维非定常流理论,对以往的活塞风理论进行了改进与优化,首先对不同状态下隧道内的空气密度进行了修正,充分考虑了活塞风的非定常性,改进了以往理论中空气密度的选取方法,使其更符合实际工况.其次引入了压力波传递机制,将其应用于活塞风的状态方程中,更准确地反映出隧道内压力的传递规律.  相似文献   

2.
提出了一种适用于工程设计的活塞风简化计算方法.该方法从运动列车与隧道气流的功能转换出发,以列车作用段作为活塞风压源,利用流体力学的基本原理、基本方程和湍流半经验理论,提出了活塞风压力和速度的计算方法.以现场实车的隧道空气动力学试验资料为参照进行对比,活塞风速度的计算值与实测符合度较好,这表明以不可压缩定常流动为计算模型的活塞风简化计算方法可为活塞风的工程实际应用提供理论基础.  相似文献   

3.
为了保证高速列车在隧道入口有侧风环境中的安全,采取数值分析的方法,建立高速列车进入隧道口存在侧风时的三维可压缩、粘性、非稳态湍流数学模型,研究了当隧道洞口有无侧风和隧道洞口侧风速度变化时隧道内的压力变化以及隧道内活塞风的变化规律.研究结果表明:隧道入口存在侧风时,隧道内测点先出现负压力峰值,后逐渐上升到正压力峰值;随着压缩波的向前传播,波形逐渐分化成两个波峰,并且压缩波越往前传播,第一个波峰逐渐消失,第二个波峰得到加强,其波峰的正压峰值超过无侧风时的最大正压峰值;隧道内速度场出现明显的非对称性,隧道内靠近迎风一侧的环状空间的列车风比背风一侧环状空间的小,背风一侧隧道入口处出现比较明显的涡流,侧风速度越大,最大负压值绝对值越大,隧道内测点的最大正压值、最大负压值均与侧风的速度成正比;当列车速度为350 km/h,侧风速度到达40 m/s时,隧道内活塞风的速度可达21.8 m/s,隧道内的压缩波的最大负压值可达-6 547 Pa.  相似文献   

4.
随着运营速度的提高,高速列车引起的气动效应与环境的相互作用变得更加复杂和剧烈,特别是高速列车通过隧道时形成活塞风,其对隧道内附属设施的荷载作用越来越显著。针对高速列车通过隧道时产生的活塞风冲击荷载,以隧道线缆夹具为研究对象,建立三维模型,并对其进行网格划分;应用有限元分析软件ANSYS,对隧道线缆夹具进行静力学分析以及模态分析。结果表明,隧道线缆夹具在强活塞风的作用下,其结构所受等效应力满足材料的最大屈服极限,变形量较小,可在实际工程中推广应用。  相似文献   

5.
为了预测地铁隧道内由活塞风效应引起的广告牌表面风荷载的时变特性,采用计算流体动力学(computational fluid dynamics,CFD)开展了活塞风三维非稳态流动模拟. 基于用户自定义函数(user-defined functions,UDF)定义了列车运行控制与动网格控制程序,搭建了精度更高的活塞风模拟方法,并结合以往的实验与仿真,验证了方法的合理性. 在此基础上根据实际隧道断面建立了全尺寸动网格模型,考虑了不同运行速度下由列车运动引起的流场变化,重点关注地铁隧道内不同位置广告牌表面的静压变化. 研究结果表明,列车经过广告牌时表面静压由正变负,速度增加时会导致广告牌表面的静压显著增大,对于80 km/h的工况静压幅值能超过500 Pa;对于部分以120 km/h运行的地铁,静压幅值超过1 kPa.   相似文献   

6.
目前高速列车隧道空气动力学模型实验系统主要用于分析隧道内压力波的变化规律,难以对空气动力学效应进行完整的分析。针对这一局限性,从科特流(Couette)理论出发,提出了一种新型实验系统即旋转式高速列车-隧道模型实验系统,介绍了该系统的可行性、结构、实验原理及其特点。分析表明:该新型实验系统结构简单、功能完善、成本低、实验重复性好,适用于进行高速列车通过隧道时产生压力瞬变、微气压波、列车活塞风、行车阻力和气动噪声等一系列空气动力学实验,并能测量隧道内和列车隧道环形空间的气流速度场,对研究高速列车隧道空气动力学问题有重要意义。  相似文献   

7.
盾构隧道壁后注浆压力分布模型   总被引:17,自引:1,他引:17  
为探讨盾构隧道壁后注浆压力在环形盾尾空隙中的传递过程,用旋转粘度计对硬性浆液的流变特性和流变参数进行了测定.试验结果显示,硬性浆液属于宾汉姆流体,其塑性粘度为1~4 Pa.s,动切力介于10~40 Pa之间.用宾汉姆流体描述硬性浆液的流变特性,导出了其注入盾尾空隙过程中注浆压力的传递公式,并用Soph ia隧道的监测结果验证了注浆压力分布模型的合理性.  相似文献   

8.
采用数值方法对高速列车在带疏散通道的隧道内列车风时程变化规律和空间分布特征进行了研究.结果表明,测点处列车风的风速在车头与车尾经过时变化较剧烈,隧道纵向列车风最大值出现在列车完全进入隧道后的时段,且车头、车尾附近的列车风以横向风为主.隧道内会车时,列车风的时程变化规律与单车运行情况下基本相同,由于列车风反向叠加,两车之间的列车风风速很小,且在在隧道内呈中心对称分布.近列车疏散通道内纵向列车风变化规律与隧道中线附近的列车风基本相似,而远列车侧疏散通道内纵向列车风风速变化相对缓和.  相似文献   

9.
在对Fluent软件进行二次开发的基础上,对磁悬浮列车穿越隧道引起的压力波进行了三维数值模拟,得出了隧道内的压力波时程曲线。并将隧道内的压力波动情况与列车的运行情况相结合,对压力波在隧道内的传播规律进行了详细的分析和解释,这对磁悬浮铁路隧道的设计提供了理论基础。  相似文献   

10.
以云南省某高速公路中段双龙富水隧道为工程背景,基于流固耦合分析理论,对富水隧道围岩稳定性影响因素进行了分析.考虑渗流场作用时,围岩级别、隧道埋深和地下水水位等因素对围岩稳定性的综合影响,得到了Ⅲ,Ⅳ,Ⅴ级围岩在各种情况下隧道开挖后围岩应力应变、位移、塑性区和孔隙水压力分布等结果,探讨了隧道开挖渗流机制,并分析了富水隧道开挖后孔隙水压力的分布特点.研究结果直接指导了富水隧道防排水施工质量的改进与提高,为富水区隧道开挖设计提供了一定的理论参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号