首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
随着就地冷再生技术在中国旧路维修改造中的大规模应用,再生混合料路用性能的优劣得到了大家的广泛关注。文中依托广东省佛山市某沥青路面维修改造工程,对泡沫(乳化)沥青就地冷再生混合料的路用性能进行试验研究,验证了泡沫(乳化)沥青就地冷再生层用于路面基层或低等级道路路面的可行性。  相似文献   

2.
就地冷再生技术具有施工便捷、污染小、旧料回收利用率高、节约成本等优势,在公路养护中得到了利用.以S49新扬高速为例,从适用条件、混合料设计、路用性能验证以及社会经济效益等方面,对就地冷再生技术进行系统研究,结果表明就地冷再生技术在高速公路养护工程中应用效果理想,可进行推广运用.  相似文献   

3.
通过试验探究SBR-SBS复合改性乳化沥青冷再生混合料的水稳定性、高温稳定性、低温抗裂性等路用性能。试验结果表明,SBS、SBR复合改性剂的掺入能有效提高冷再生混合料各项路用性能。当SBS掺量为3%、SBR掺量为3.5%时,混合料28 d的残留稳定度达85.3%,劈裂强度比也均达到93.6%,动稳定度超过10 000次/mm,弯拉应变达到3 500με。  相似文献   

4.
通过对广东佛山一环高速公路旧路路面使用现状及病害成因分析,提出乳化沥青冷再生试验路路面结构设计方案;为确保乳化沥青冷再生混合料具备良好的路用性能,开展不同RAP掺量、水泥掺量对乳化沥青冷再生混合料性能影响研究,确定RAP掺量为80%、水泥掺量为1.5% 时其综合性能较佳;开展试验路铺筑,总结分析乳化沥青冷再生混合料现场...  相似文献   

5.
郑灿伟 《公路》2022,(4):82-86
为提高乳化沥青冷再生混合料路用性能,制备70%RAP(废旧沥青路面回收材料)掺量的水性环氧乳化沥青冷再生混合料进行研究。通过击实试验及劈裂试验确定水性环氧乳化沥青冷再生混合料的最佳含水量和最佳乳化沥青用量分别为4.0%、4.3%;采用沥青混合料车辙试验、低温弯曲试验、冻融劈裂试验及四轮加载磨耗试验评价水性环氧乳化沥青冷再生混合料的性能。试验结果表明:水性环氧乳化沥青冷再生混合料具有更好的高温稳定性、水稳定性和耐久性;低温抗裂性略有降低,但仍满足规范要求;推荐水性环氧树脂掺量为10%。  相似文献   

6.
杨东光 《公路》2020,(3):1-7
为了提升乳化沥青冷再生混合料的力学性能、路用性能及耐久性能,并将乳化沥青冷再生混合料用于更高路面结构层位,基于力学性能试验,研究不同种类和掺量纤维对乳化沥青冷再生混合料力学性能的影响,采用3大路用性能试验、肯塔堡飞散试验和四点弯曲疲劳试验研究掺加纤维的乳化沥青冷再生混合料路用性能、抗松散性能与耐久性。结果表明,掺加纤维有助于提高乳化沥青冷再生混合料的力学性能、路用性能、抗松散性能和耐久性能,但随着纤维掺量增大乳化沥青冷再生混合料力学性能呈先增大后减小趋势,对纤维乳化沥青冷再生混合料的力学性能而言,存在一个最佳的纤维掺量;对乳化沥青冷再生混合料综合路用性能与疲劳特性的改善效果排序为玄武岩纤维>聚丙烯晴纤维>聚酯纤维>聚丙烯纤维。掺加纤维能够显著改善乳化沥青冷再生混合料高温时在持续荷载作用下的长期稳定性。研究成果为甄选适用于乳化沥青冷再生混合料的纤维种类和合理的纤维掺量提供借鉴。  相似文献   

7.
通过室内试验研究了水泥用量对乳化沥青冷再生混合料高温稳定性、低温抗裂性和水稳定性等路用性能的影响。试验结果表明,增大水泥用量能很好地改善乳化沥青冷再生混合料的高温稳定性和水稳定性,而大的水泥用量虽然增大了混合料的破坏应力,但使破坏应变大幅减小,混合料的低温抗变形能力变差。  相似文献   

8.
陈诚  薛建荣 《公路工程》2016,(4):72-77,90
为研究橡胶粉改性乳化沥青和橡胶粉掺量对冷再生混合料强度特性和路用性能的影响,探究橡胶粉改性沥青用于冷再生混合料的可行性,并将其与普通乳化沥青和SBS改性乳化沥青进行了对比,基于乳化沥青冷再生混合料早期强度、力学性能和路用性能要求,确定了适宜的橡胶粉掺量。室内试验结果表明:采用废橡胶粉制备改性乳化沥青是可行的,相比SBS改性乳化沥青,橡胶粉改性乳化沥青具有良好的储存稳定性,且具有更高的柔韧性和弹性。橡胶粉改性乳化沥青可大幅度提高冷再生混合料的路用性能,尤其是显著改善了冷再生混合料的低温抗裂性和抗疲劳耐久性。工程实践证明,橡胶粉改性乳化沥青冷再生混合料摊铺完成4天后即可钻出完整芯样,显著改善了冷再生混合料的早期强度。  相似文献   

9.
周叙 《公路与汽运》2012,(3):150-154
结合广东某高速公路实验路试验研究,简要介绍了乳化沥青就地冷再生技术的再生原理、强度形成机理和就地冷再生混合料配合比设计过程,为乳化沥青就地冷再生技术的推广应用和进一步研究分析积累经验.  相似文献   

10.
道路就地冷再生是指充分利用现有旧铺层材料(面层甚至基层),并根据再生后结构层的结构特征,适当加入部分新骨料,并按一定比例加入一定量的添加剂和适量的水,在自然环境温度下就能连续地完成材料的铣刨、破碎、添加、拌和、摊铺及压实成型,从而得到所需性能质量的新基层的过程。就地冷再生工艺概念如图1。这是国外在20世纪80年代后期迅速发展起来的一种新技术,目前已成为国际上道路维修改造的主要办法之一。  相似文献   

11.
2001年,维特根公司与加拿大艾德蒙顿市就共同开发泡沫沥青就地冷再生工程的可能性进行了深入探讨,最终确定对该市Ellerslie路的一个待维修路段,采用就地冷再生方案实施维修,具体维修方法是加入砾石和乳化沥青,对上部结构层进行就地冷再生.  相似文献   

12.
依托某高速公路大修工程,对现场冼刨RAP材料进行了分析。选用改性乳化沥青为粘结料,室内试验确定了最佳用水量和最佳改性乳化沥青用量均为4%,进而确定了目标配合比为RAP(10~31.5)∶RAP(0~10)∶矿粉∶水泥∶外加水∶改性乳化沥青=43∶57∶2.5∶1.5∶4∶4,通过室内性能试验验证,表明乳化沥青厂拌冷再生混合料技术可行,路用性能良好。  相似文献   

13.
针对乳化沥青冷再生混合料的特点,通过对目前冷再生设计方法的比较,提出乳化沥青冷再生混合料早期强度的评价方法。介绍了乳化沥青配方早期强度选择的基本流程,最后通过混合料早期黏聚力,抗磨耗能力及取芯能力确定最佳乳化沥青配方,并结合工程实践说明新设计方法是可行的。  相似文献   

14.
改性乳化沥青-水泥就地冷再生混合料性能研究   总被引:3,自引:1,他引:3  
为了评价改性乳化沥青-水泥就地冷再生混合料的性能,应用了就地冷再生混合料的配合比设计程序,包括原材料选择、级配设计和性能评价.专用于就地冷再生的改性乳化沥青采用了复配技术和改性剂SBR胶乳,新集料用于调整RAP级配,基于不同改性乳化沥青和水泥含量的性能试验,确定了最佳改性乳化沥青和水泥含量;同时,对通车1a后的再生路面进行了跟踪观测,推荐了用作面层的乳化沥青就地冷再生混合料的性能评价标准.结果表明,改性乳化沥青-水泥就地冷再生混合料具有较好的强度性能、水稳定性和高温稳定性,实践表明就地冷再生是一种经济有效的养护方式,具有明显的经济效益和社会效益.  相似文献   

15.
提出了闭环可再利用的概念,以及沥青混合料的可溯源性和解构性,并对就地冷再生工艺作了探讨,认为粒径控制、称重控制和拌和控制是再生设备的关键,应在室内实验的基础上选择粘结剂和混合料的配合比.  相似文献   

16.
17.
在0%、10%、20%三种新集料掺量下,本文进行改性乳化沥青冷再生混合料的配合比设计,并定量评价不同新集料掺量对改性乳化沥青冷再生混合料性能的影响。结果表明,增加新集料掺量能够提高再生混合料的路用性能。  相似文献   

18.
沥青路面冷再生技术将废旧沥青混合料作为原材料,加入乳化沥青、水泥及外加剂,拌合成新的混合料用于铺筑路面,可节约材料、降低造价、节能环保。现采用不同乳化剂类型的乳化沥青作为结合料,在不同乳化沥青用量和水泥用量条件下,进行冷再生沥青混合料物理参数及高、低温性能的试验研究,分析乳化剂类型、乳化沥青用量和水泥用量对混合料高、低温性能的影响。通过试验研究,得到了满足混合料性能规范要求的最佳乳化沥青用量和水泥用量。研究结果对冷再生沥青混合料的工程应用提供理论依据。  相似文献   

19.
乳化沥青就地冷再生技术在干线公路中的应用研究   总被引:1,自引:0,他引:1  
文章介绍了乳化沥青就地冷再生技术的特点和国内外应用现状。根据旧路状况,设计了再生路面结构和乳化沥青冷再生混合料的配合比,路用性能试验结果表明,乳化沥青冷再生混合料具有较好的力学强度、水稳定性和高温稳定性。根据现场施工经验,总结了乳化沥青就地冷再生的施工工艺,并进行了经济环境效益分析。工程实践表明,乳化沥青就地冷再生是一项"绿色"的道路养护先进技术,具有突出的节能环保优势,提高了道路材料的循环利用率,符合公路交通可持续发展的要求。  相似文献   

20.
文章利用室内试验的方法,研究了水泥对厂拌冷再生沥青混合料路用性能的影响。室内试验结果表明:厂拌冷再生沥青混合料的高温稳定性较好,低温抗裂性能基本满足低等级公路路面的技术要求,但其水稳性能不甚理想;添加水泥可明显改善厂拌冷再生沥青混合料的水稳性能,对其高温稳定性能和低温抗裂性能也有一定的改善效果;厂拌冷再生混合料的新料与旧料掺配比例为1:6和1:7,水泥添加量为3%时,再生料的使用效果较好,其各项路用性能指标满足农村公路路面的技术要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号