共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
为了进一步提高短时交通流预测的精确度,通过分析灰色模型、遗传算法和支持向量机模型的特点,提出一种组合的短时交通流预测模型.模型运用灰色模型对原始交通流数据序列进行累加,弱化其随机性,再通过遗传优化支持向量机模型进行预测,利用灰色模型将预测结果进行累减,得到最终的预测值表.以长春市某主干路交通流数据为基础,验证了该模型的有效性和可行性. 相似文献
3.
短时交通流预测是实施智能交通控制的基础和保障.针对目前短时交通流预测方法拟合交通数据的能力偏弱,以及过分依赖历史数据的不足,提出一种基于深度学习回归机的短时交通流预测方法.首先构建深度学习回归机算法模型,包括受限玻尔兹曼机的显层节点输入端,受限玻尔兹曼机的若干中间层,以及径向基支持向量回归机输出端.通过实验将深度学习回归机预测方法与其他典型的短时交通流预测算法进行比较,结果表明,在相同的数据和计算平台下,本文提出的深度学习回归机预测方法精度更高,且预测实时性也能满足实际的需求. 相似文献
4.
短时交通流预测是实施智能交通控制的基础和保障.针对目前短时交通流预测方法拟合交通数据的能力偏弱,以及过分依赖历史数据的不足,提出一种基于深度学习回归机的短时交通流预测方法.首先构建深度学习回归机算法模型,包括受限玻尔兹曼机的显层节点输入端,受限玻尔兹曼机的若干中间层,以及径向基支持向量回归机输出端.通过实验将深度学习回归机预测方法与其他典型的短时交通流预测算法进行比较,结果表明,在相同的数据和计算平台下,本文提出的深度学习回归机预测方法精度更高,且预测实时性也能满足实际的需求. 相似文献
5.
针对目前交通量预测中所广泛采用的基于经验风险最小化的BP网络易于陷入局部最优解等缺点,介绍了一种新的预测方法——基于结构风险最小化的SVMR交通量预测模型,经实践证明能够较好地解决道路交通量预测问题。 相似文献
6.
考虑交通流的时空因素进行短时交通流预测,能够提高预测的精度.为此,引入径向基核函数,将复杂的预测问题转化为高维空间的回归问题;然后,基于支持向量回归机并考虑时空因素影响作用建立在线的短时交通量预测模型,通过网格搜索的方法对模型参数进行优化;最后,构造时间-空间状态向量,通过不同的状态向量对时间和空间维度的影响进行了分析.利用高速公路检测器数据,对比不同模型的精度,对在线短时交通量预测模型的有效性和可行性进行了验证.结果表明:在线模型精度优于传统的支持向量回归模型,考虑时空因素影响后交通量预测模型具有更高的精度和稳定性. 相似文献
7.
在介绍智能交通系统的特点和相关技术的基础上,SVR算法被用来处理短时交通量预测问题.实验证明,支持向量机在交通系统中的应用具有可行性、有效性和广阔的前景. 相似文献
8.
在介绍智能交通系统的特点和相关技术的基础上,SVR算法被用来处理短时交通量预测问题。实验证明,支持向量机在交通系统中的应用具有可行性、有效性和广阔的前景。 相似文献
9.
10.
11.
针对城市主干道交通流量的实时变化和波动性特点,利用支持向量回归机(support vector regression,SVR)进行城市主干道短时交通流量预测.为了优选SVR模型参数,基于混沌logistic 映射和云自适应机制对标准遗传算法进行改进,建立了基于混沌云自适应遗传算法(chaos clouds adaptive genetic algorithm,CCLGA)进行SVR参数优选的CCLGA-SVR城市主干道短时交通流量预测模型.综合考虑了短时交通量各个影响因素,结合实测数据进行了实证预测分析,仿真结果表明文中提出的预测模型精度较高,寻优速度较快,可有效应用于城市主干道短时交通流量预测. 相似文献
12.
13.
城市道路交通状态会同时受到时间、空间多维因素的影响. 为对城市道路短期交通状态进行比较准确的预测,本文在分析多维时空参数的基础上,构造了基于支持向量机(SVM)的不同维数的道路短期交通状态预测模型,并通过贵阳市中心城区的出租车GPS数据对各种模型的预测精度进行了检验,分析各时空参数对道路交通状态的影响程度. 结果表明, 基于目标路段先前流量数据及下游路段交通状况的SVM模型具有较高的预测精度. 为了进一步分析该模型的性能,将其与线性回归模型和ARMA模型进行了比较,实验结果显示,本文提出的SVM模型具有较好的预测效果,表明该方法是进行道路短期交通状态预测的有效手段. 相似文献
14.
考虑上下游公交站点、历史同期客流和相邻间隔输入因子β三者的影响,采用最小二乘支持向量机回归算法建立预测模型,并利用粒子群算法优化模型参数.实例验证结果表明:三者均会对预测精度产生影响;当β=3并在多输入变量中设有上下游站点、历史同期客流维度时,该预测模型相比预测性能最好,平均绝对误差为0.625 0,均方误差为0.914 5. 相似文献
15.
基于非参数回归的短时交通流预测研究综述 总被引:2,自引:0,他引:2
短时交通流预测是实现交通控制和诱导的关键问题之一。综述了基于非参数回归的短时交通流预测方法,指出了状态向量的选取没有考虑天气环境等存在的问题,提出了改进思路和方法,即基于动态聚类和决策树的历史数据组织方式、时空一天气环境相结合的状态向量选取方法以及基于密集度和状态向量的自适应变K机制等,期望通过这些改进能提高基于非参数回归短时交通流的预测精度,为交通控制和交通诱导建立基础。 相似文献
16.
精准且快速的短时交通流预测是智能交通发展的重要组成部分.本文针对当前交通流预测模型不能充分提取交通流数据的时空特征、预测性能容易受到外界干扰因素影响的问题,提出一种基于深度学习的短时交通流预测模型,该模型结合卷积神经网络(Convolutional Neural Network,CNN)与支持向量回归分类器(Support Vector Regression,SVR)的特点:在网络底层应用CNN进行交通流特征提取,并将提取结果输入到SVR回归模型中进行流量预测.为验证模型的有效性,取G103国道的实际交通流量数据进行试验.结果表明,提出的预测模型与传统的预测模型相比具有更高的预测精度,预测性能提高了11%,是一种有效的交通流预测模型. 相似文献
17.
交通流量预测是当前交通大数据应用的重要议题之一.经典的交通流量预测方法通常只根据被预测道路自身的数据进行分析和决策,而往往较少考虑由于同一区域不同道路之间的交通流量关联性.本研究根据城市核心区交通流量数据的特点,构建同区域内多条相关道路的交通流量多维度数据模型.并且,基于该数据模型提出了一种基于多机器学习竞争策略的交通流量预报算法.该算法的主要核心思想是利用时间序列聚类的方式将多维交通流量数据进行降维,然后通过引入多种多机器学习方法进行并发训练,其训练结果通过竞争获得最优分类器群.最后设计了多最优机器学习集成预测方法进行交通流量预测.本模型通过在南昌市中心道路进行的实验显示,其预测结果优于传统单时间序列机器学习方法. 相似文献