首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
交通量预测的支持向量机回归法   总被引:1,自引:0,他引:1  
针对目前交通量预测中所广泛采用的基于经验风险最小化的BP网络易于陷入局部最优解等缺点.一种新的预测方法——基于结构风险最小化的SVMR交通量预测模型经实践证明能够较好地解决道路交通量预测问题。  相似文献   

2.
为了进一步提高短时交通流预测的精确度,通过分析灰色模型、遗传算法和支持向量机模型的特点,提出一种组合的短时交通流预测模型.模型运用灰色模型对原始交通流数据序列进行累加,弱化其随机性,再通过遗传优化支持向量机模型进行预测,利用灰色模型将预测结果进行累减,得到最终的预测值表.以长春市某主干路交通流数据为基础,验证了该模型的有效性和可行性.  相似文献   

3.
短时交通流预测是实施智能交通控制的基础和保障.针对目前短时交通流预测方法拟合交通数据的能力偏弱,以及过分依赖历史数据的不足,提出一种基于深度学习回归机的短时交通流预测方法.首先构建深度学习回归机算法模型,包括受限玻尔兹曼机的显层节点输入端,受限玻尔兹曼机的若干中间层,以及径向基支持向量回归机输出端.通过实验将深度学习回归机预测方法与其他典型的短时交通流预测算法进行比较,结果表明,在相同的数据和计算平台下,本文提出的深度学习回归机预测方法精度更高,且预测实时性也能满足实际的需求.  相似文献   

4.
针对目前交通量预测中所广泛采用的基于经验风险最小化的BP网络易于陷入局部最优解等缺点,介绍了一种新的预测方法——基于结构风险最小化的SVMR交通量预测模型,经实践证明能够较好地解决道路交通量预测问题。  相似文献   

5.
短时交通流预测是实施智能交通控制的基础和保障.针对目前短时交通流预测方法拟合交通数据的能力偏弱,以及过分依赖历史数据的不足,提出一种基于深度学习回归机的短时交通流预测方法.首先构建深度学习回归机算法模型,包括受限玻尔兹曼机的显层节点输入端,受限玻尔兹曼机的若干中间层,以及径向基支持向量回归机输出端.通过实验将深度学习回归机预测方法与其他典型的短时交通流预测算法进行比较,结果表明,在相同的数据和计算平台下,本文提出的深度学习回归机预测方法精度更高,且预测实时性也能满足实际的需求.  相似文献   

6.
考虑交通流的时空因素进行短时交通流预测,能够提高预测的精度.为此,引入径向基核函数,将复杂的预测问题转化为高维空间的回归问题;然后,基于支持向量回归机并考虑时空因素影响作用建立在线的短时交通量预测模型,通过网格搜索的方法对模型参数进行优化;最后,构造时间-空间状态向量,通过不同的状态向量对时间和空间维度的影响进行了分析.利用高速公路检测器数据,对比不同模型的精度,对在线短时交通量预测模型的有效性和可行性进行了验证.结果表明:在线模型精度优于传统的支持向量回归模型,考虑时空因素影响后交通量预测模型具有更高的精度和稳定性.  相似文献   

7.
杨怡 《交通标准化》2009,(11):97-100
在介绍智能交通系统的特点和相关技术的基础上,SVR算法被用来处理短时交通量预测问题。实验证明,支持向量机在交通系统中的应用具有可行性、有效性和广阔的前景。  相似文献   

8.
9.
在介绍智能交通系统的特点和相关技术的基础上,SVR算法被用来处理短时交通量预测问题.实验证明,支持向量机在交通系统中的应用具有可行性、有效性和广阔的前景.  相似文献   

10.
基于多输出支持向量机的物流量预测研究   总被引:1,自引:1,他引:0       下载免费PDF全文
物流量预测问题受众多因素影响,而已有的方法都是用多输入单输出模型进行预测,因此难以获得满意的预测效果。一种多输出支持向量机的方法用于广州市的物流量的预测中,为了与单输出预测相比,选取自适应迭代支持向量机方法进行预测。结果表明,多输出支持向量机的预测是有效的。  相似文献   

11.
针对城市主干道交通流量的实时变化和波动性特点,利用支持向量回归机(support vector regression,SVR)进行城市主干道短时交通流量预测.为了优选SVR模型参数,基于混沌logistic 映射和云自适应机制对标准遗传算法进行改进,建立了基于混沌云自适应遗传算法(chaos clouds adaptive genetic algorithm,CCLGA)进行SVR参数优选的CCLGA-SVR城市主干道短时交通流量预测模型.综合考虑了短时交通量各个影响因素,结合实测数据进行了实证预测分析,仿真结果表明文中提出的预测模型精度较高,寻优速度较快,可有效应用于城市主干道短时交通流量预测.  相似文献   

12.
交通流短时预测理论研究进展   总被引:4,自引:0,他引:4  
交通流短时预测是智能运输系统。尤其是其先进的交通管理系统和出行者信息系统研究的一个重要内容。利用预测算法来分析交通数据,并预测未来数分钟内的交通流状态,便于及时采取适当的交通控制措施和诱导措施。  相似文献   

13.
考虑上下游公交站点、历史同期客流和相邻间隔输入因子β三者的影响,采用最小二乘支持向量机回归算法建立预测模型,并利用粒子群算法优化模型参数.实例验证结果表明:三者均会对预测精度产生影响;当β=3并在多输入变量中设有上下游站点、历史同期客流维度时,该预测模型相比预测性能最好,平均绝对误差为0.625 0,均方误差为0.914 5.  相似文献   

14.
基于非参数回归的短时交通流预测研究综述   总被引:2,自引:0,他引:2  
短时交通流预测是实现交通控制和诱导的关键问题之一。综述了基于非参数回归的短时交通流预测方法,指出了状态向量的选取没有考虑天气环境等存在的问题,提出了改进思路和方法,即基于动态聚类和决策树的历史数据组织方式、时空一天气环境相结合的状态向量选取方法以及基于密集度和状态向量的自适应变K机制等,期望通过这些改进能提高基于非参数回归短时交通流的预测精度,为交通控制和交通诱导建立基础。  相似文献   

15.
交通流可预测性分析   总被引:1,自引:0,他引:1  
交通流的可预测性是进行短期交通流预测的基础。本文首先判别了短期交通流的混沌特性,求解出表征交通流“蝴蝶效应”的最大Lyapunov特征指数,在此基础上按照交通流动力系统运动轨道的演化特点求解出最大可预测时间,但是交通流系统是开放的复杂巨系统,最大可预测时间涉及到的影响因素很多,论文分析了交通流历史数据样本的大小和数据中含有的噪声对交通流可预测性的影响和随着预测步长的增加,交通流可预测性的衰减特征,得出交通流可预测性是一个综合指标,不能仅仅以最大Lyapunov指数的倒数来确定,应综合分析考虑。论文得到的结果在实际的交通流数据中得到了验证。  相似文献   

16.
参数选择问题影响了支持向量机预测模型在交通流量中的预测性能.为了解决支持向量机预测模型的参数选择问题,引入了粒子群优化算法机制,通过粒子群优化选择支持向量机预测模型的学习训练参数,得到较优的PSO-SVM预测模型.通过实例仿真实验,将PSO- SVM预测模型与神经网络预测模型进行了比较,显示了其优越性.  相似文献   

17.
基于混沌高效遗传算法优化SVM的交通量预测   总被引:1,自引:0,他引:1  
针对交通量预测本身所存在的小样本、非线性和复杂性等特点,利用支持向量机建立了基于RBF核函数的SVM交通量预测模型,采用基于混沌映射和加速遗传算法的混沌高效遗传算法对SVM模型参数C,ε和δ2进行优选,结合某市1978~2008年交通量实测资料进行了仿真验证,与GA-SVM模型和BP神经网络模型的仿真预测结果对比表明:该模型取得了较好的预测效果,可有效应用于城市交通量的预测.  相似文献   

18.
K近邻短期交通流预测   总被引:1,自引:0,他引:1  
从分析短时交通流特性入手,利用非参数回归中K近邻的方法,对道路交通流量进行短期预测;采用贵阳市道路交通流量的实际数据进行验证。结果表明:K近邻非参数回归预测模型能较为准确的进行道路短期交通流预测,该方法可用于短期交通流预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号