首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
运用ABAQUS软件建立了桩网结构低路基动力有限元模型, 通过计算结果与实测结果的对比验证了模型的可靠性, 并分析了列车荷载下路基中动应力分布、桩土应力比与等沉面高度变化特征。分析结果表明: 采用模型计算的路基不同深度处动应力与实测结果最大差值为0.56kPa, 动位移的最大差值为7μm, 计算和实测的平均动应力和动位移沿路基深度的传递趋势相同, 因此, 有限元模型可靠; 在动荷载作用下, 路基中存在土拱效应, 土拱高度约为1.6m, 与静荷载作用下土拱高度近似, 路基表面的应力变化率比路基基底大; 路基中动应力的分布受到土拱效应的影响, 表现为传递到桩间土上方土体的动应力部分转移至桩顶上方, 且在路基垫层附近动应力转移现象最明显; 在动荷载作用后, 路基中心处桩顶与两桩间的桩土应力比减小, 而桩顶与四桩间的桩土应力比增大, 桩顶与两桩间的桩土应力比始终大于桩顶与四桩间的桩土应力比; 距离路基中心1m处纵断面等沉面高度为1.55m, 布置桩体的纵断面等沉面高度大于未布置桩体的纵断面等沉面高度, 且沿路基中心到路肩, 同类纵断面的等沉面高度逐渐降低, 动荷载作用后, 路基中心处等沉面高度增大。  相似文献   

2.
进行了云桂高铁膨胀土新型路堑基床综合试验段现场激振试验, 借助有限差分软件FLAC3D, 建立了三维轨道-路基-地基动力学模型, 分析了新型路堑基床动力响应与防排水结构层参数敏感性。分析结果表明: 铺设新型防排水结构层可加速基床内动应力的衰减, 降低路基表面动位移; 增加防排水结构层厚度和弹性模量可降低基床动位移, 减弱防排水结构层下方基床动应力, 但会提高防排水结构层顶面的动应力水平; 防排水结构层铺设位置下移时会增大路基表面动应力, 但对路基表面动位移影响不大; 为满足《高速铁路设计规范》(TB 10621—2009)要求, 建议防排水结构层铺设厚度不小于15 cm; 路基表面动应力、动位移与地基表面动应力敏感性因素依次是防排水结构层的铺设位置、弹性模量与铺设厚度; 考虑新型防排水结构层参数对基床动响应的影响, 确定的最优方案为: 铺设厚度为20 cm, 弹性模量为1.0 GPa, 铺设位置为基床表层底部。  相似文献   

3.
为了探究重载铁路水泥改良膨胀土路基填料的工程特性及路用性能,采用室内动三轴试验、微观结构试验、路基原位动力试验相结合的方法,揭示了膨胀土掺入水泥3%~5%改良前后静态指标与动态指标的变化特征,分析了水泥掺量5%和3%改良膨胀土分别用作重载铁路基床底层及以下路堤填料建设期的工作性能,评估了服役期列车动载作用下路基的动力稳定性.研究结果表明:膨胀土掺入3%~5%水泥改良后,强度提高同时胀缩性显著降低,水稳定性提高3~4倍;相比重塑素膨胀土,水泥掺量3%~5%改良膨胀土临界动应力提高5~6倍;检测路基压密程度与强度指标满足规范且有较大富裕,监测路基中线地基沉降在铺轨前处于稳定状态;原位动力测试表明列车动载作用下路基的动应力沿深度逐渐衰减,在基床表层与基床底层范围内最大衰减量分别可达40%和80%以上,动应力影响深度是基床设计厚度的1.4~1.8倍,动应力影响深度范围内路基的动应力值远小于同位置填料的临界动应力,运营期路基动力稳定性满足安全服役要求.研究成果能够为重载铁路水泥改良膨胀土路基精细化建设养修提供理论参考.  相似文献   

4.
列车速度对无碴轨道路基动力特性的影响   总被引:2,自引:0,他引:2  
为了分析列车速度对无碴轨道路基动力影响, 采用层状体系理论, 结合有限元方法, 建立无碴轨道路基层状有限元模型, 考虑了列车荷载的不同速度对基床表层振动加速度、竖向动位移、动应力及其横向分布等路基动力特性的影响, 研究了无碴轨道路基荷载作用下的力学行为。结果表明: 列车速度对基床表层加速度的影响较大, 竖向加速度随荷载速度的提高而增大; 列车速度对基床表层动位移影响较小, 速度每提高20 km·h-1, 其值变化不大于0.05 mm; 路基表层动应力随列车速度的提高呈现一定的波动趋势。计算结果与实测结果相似, 证明了该模型的正确性。  相似文献   

5.
掌握有轨电车交通荷载下路基动力响应特性是设计嵌入式轨道路基结构的关键技术前提.首先,考虑车体间铰接形式、轨道支承特点与路基阻尼影响,构建有轨电车-嵌入式轨道-土质路基耦合动力学模型;然后,以中国普通干线铁路轨道谱为激励,进行动力学仿真;最后,分析路基面承受车辆荷载特点,并讨论动应力放大系数的概率分布特征与沿深度衰减规律.研究表明:嵌入式轨道结构路基面动应力的幅值受轨道随机不平顺影响服从正态分布规律;在有轨电车轴重11 t、设计速度100 km/h、90%干线轨道谱条件下,路基面动应力放大系数服从正态分布N(1.008, 0.1002),超越概率30%的常遇动力系数为1.058,保证率为99.9%的极限动力系数为1.308;受路基材料阻尼影响,动应力放大系数沿深度线性衰减,阻尼增大,衰减趋势加剧;随着深度增加,动应力放大系数均值逐渐减小,由动力作用增大区略大于1过渡到动力作用减弱区小于1.  相似文献   

6.
李彦春 《北方交通》2012,(12):21-23
路基土体的动力学参数是铁路设计的重要依据之一。基于冻土特殊的物理力学性质以及在列车振动荷载作用下铁路路基严重破坏的事实,进行了冻土在不同围压、动应力幅值、温度以及含水量条件下的振动三轴试验,获得了冻土的动力学参数以及动剪切强度与上述条件的关系。试验结果表明:随着围压、动应力幅值的增加和温度的降低,土体的动剪切强度增加。在冻结条件下,随着土样含水量的增加,冻土的动剪切强度增加,这与未冻结土的动强度变化规律完全不同。  相似文献   

7.
通过对不同轴重、速度下的编组试验列车进行动态测试,分析了既有线重载铁路基基床动应力、加速度及动位移分别随轴重增加和速度提高的变化规律,为既有线重载铁路路基改能扩建以及病害机理的研究提供了依据。  相似文献   

8.
针对重载交通下高速公路路基动力响应问题,通过在高速公路路基埋设测试元件,测试了重载车辆运行下沥青混凝土路面—路基结构的动应力,获取了不同轴重和车速下路基的动应力峰值分布规律,得出了路基动应力随深度衰减的系数值,并依据动应力与自重应力的关系划分不同的路基工作区,结果表明:在120、140、160 k N的轴重下,动敏感区深度分别为1.26、1.36、1.45 m,相对于标准轴载增长约5.1%、13.3%、21.8%;动影响区深度为1.69、1.77、1.88 m,相对于标准轴载增长约5.6%、10.6%、17.5%。重载交通作用下动应力对路基的影响范围明显加深,因此在路基结构设计及稳定性保障上需引起足够的重视。  相似文献   

9.
交通荷载作用下路基变形是道路工程主要研究问题。对煤矸石填料进行动三轴试验,研究了煤矸石填料变形特性与累积振次、动荷载幅值的变化规律,并依据交通荷载动力特性,对交通荷载作用下路基变形响应进行数值模拟。试验和数值模拟结果表明:煤矸石填料变形随累积振次增加而增长,前期增长速度较快,后期增长速度缓慢且变形值逐渐趋于定值;相同振次条件下,变形随动荷载幅值增加而增长;车辆正下方路基沉降位移随路基深度增加而减小,但减小速率逐渐降低,沉降曲线在深度6 m左右出现明显拐点,表明交通荷载影响深度为6 m左右;路基沉降随行车速度增加而增长,这为道路路基设计提供了依据。  相似文献   

10.
为探讨列车轴重和运行速度对土质路基动力特性的影响,用ANSYS与FLAC3D软件对有砟轨道-路基系统进行了三维动力数值模拟,在模拟过程中,利用滞后阻尼实现了土体在循环动荷载下的非线性特性.用该方法对达成线循环加载试验段的路基进行建模计算,所得路基动应力与现场实测数据有很好的一致性.在荷载振动频率与客车运行速度的转换过程中,取相邻车厢两个转向架的间距为相邻两个动应力波峰之间的距离,在此基础上,探讨了客车运行速度对土质路基动力性质的影响.研究表明:列车轴重和运行速度对路基表面动应力影响较大,随着轴重的增加和速度的提高,路基表面动应力呈马鞍形分布的趋势愈加明显;动应力沿路基深度的衰减规律受车速的影响很小,不同车速下的动应力在基床表层内都衰减了42%~46%,再经过基床底层的扩散,衰减值达79%~82%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号