首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY

The demands upon the dynamic behaviour of a vehicle can be stated as an optimization problem. The optimum solution is calculated using an iterative optimization algorithm. Scaling the problem by non-linear transformations reduces the number of iterations. Lagrange multipliers provide useful information about the sensitivity of the optimum with respect to changes of the constraints. The analysis of the dynamic behaviour is performed in the frequency domain. New structural variants are calculated using system synthesis. As an example, the engine, cab and wheel suspension systems of a tractor/semi-trailer have been optimized all together.  相似文献   

2.
The dynamic vertical interaction between a moving rigid wheel and a flexible railway track is investigated. A round and smooth wheel tread and an initially straight and noncorrugated rail surface are assumed in the present optimization study. A symmetric linear three-dimensional beam structure model of a finite portion of the track is suggested including rail, pads, sleepers and ballast with spatially nonproportional damping. The full interaction problem is numerically solved by use of an extended state-space vector approach in conjunction with a complex modal superposition for the track. Transient bending stresses in sleepers and rail are calculated. The influence of seven selected track parameters on the dynamic behaviour of the track is investigated. A two-level fractional factorial design method is used in the search for a combination of numerical levels of these parameters making the maximum bending stresses a minimum.  相似文献   

3.
SUMMARY

The dynamic vertical interaction between a moving rigid wheel and a flexible railway track is investigated. A round and smooth wheel tread and an initially straight and noncorrugated rail surface are assumed in the present optimization study. A symmetric linear three-dimensional beam structure model of a finite portion of the track is suggested including rail, pads, sleepers and ballast with spatially nonproportional damping. The full interaction problem is numerically solved by use of an extended state-space vector approach in conjunction with a complex modal superposition for the track. Transient bending stresses in sleepers and rail are calculated. The influence of seven selected track parameters on the dynamic behaviour of the track is investigated. A two-level fractional factorial design method is used in the search for a combination of numerical levels of these parameters making the maximum bending stresses a minimum.  相似文献   

4.
宫帅  储伟 《汽车科技》2012,(6):64-68
摘要:采用正交试验与有限元仿真结合的方法,将某乘用车的侧碰改进问题归纳为一个7因素2水平的优化问题,进行了8种优化设计方案的计算,应用极差分析法对结果进行分析和整理,找到了对本车的侧碰性能影响显著的部件。最后,制定了最终的改进方案,计算结果表明,该方案在考虑成本的前提下实现了侧碰安全性的提升。  相似文献   

5.
This research suggests a new disk brake design using circumferential friction on the disk of a front-wheel-drive passenger car. The paper compares mechanical performance between the conventional and suggested disk brakes under dynamic braking conditions. Thermoelastic instability is considered in simulation of the test condition. An optimization technique using a metamodel is introduced to minimize the weight of the suggested disk brake. To achieve this goal, the response defined in the optimization formulation is expressed in a mathematically explicit form with respect to the design variables by using a kriging surrogate model, resulting in a simple optimization problem. Then, the simulated annealing algorithm is utilized to find the global optimum. The design results obtained by the kriging method are compared with those obtained from ANSYS analysis.  相似文献   

6.
制定桥梁维修管理计划是一项非常繁杂的工程优化难题,使用常用的优化算法很难取得满意的结果。利用耐荷性和耐久性作为桥梁的健康指数,考虑维修方案和维修费用的问题,用费用最小化和品质最大化2种方案建立了桥梁维修管理的优化模型。探讨利用粒子群优化算法(PSO)求最优桥梁维修管理计划的解的可能性,并与作者开发系统中的遗传算法(SGA)和免疫遗传算法(IA)进行了比较,运用多样度的概念说明了粒子群优化算法(PSO)在解决这类问题的先进性。结果表明,粒子群优化算法(PSO)对于桥梁维修管理计划的优化是一种普适高效的算法;而且,考虑维修的管理期间越长,应用粒子群优化算法求解问题收敛性与其他2种方法相比显得更好,得到准最优解的频率也更高。  相似文献   

7.
Proper rail geometry in the crossing part is essential for reducing damage on the nose rail. To improve the dynamic behaviour of turnout crossings, a numerical optimisation approach to minimise rolling contact fatigue (RCF) damage and wear in the crossing panel by varying the nose rail shape is presented in the paper. The rail geometry is parameterised by defining several control cross-sections along the crossing. The dynamic vehicle–turnout interaction as a function of crossing geometry is analysed using the VI-Rail package. In formulation of the optimisation problem a combined weighted objective function is used consisting of the normal contact pressure and the energy dissipation along the crossing responsible for RCF and wear, respectively. The multi-objective optimisation problem is solved by adapting the multipoint approximation method and a number of compromised solutions have been found for various sets of weight coefficients. Dynamic behaviour of the crossing has been significantly improved after optimisations. Comparing with the reference design, the heights of the nose rail are notably increased in the beginning of the crossing; the nominal thicknesses of the nose rail are also changed. All the optimum designs work well under different track conditions.  相似文献   

8.
Almost all researches about dynamic lane assignment were conducted to evaluate the effectiveness of applying this technique at signalized intersections. However, little attention was given to the method of identifying quickly the optimum lane group. This research suggests a quick method to find the optimum lane group for 3-lane and 4-lane approaches at junctions where each approach has green by itself in turn using the percentage of turning movements. MATLAB environment was used to build an optimization model to find the optimal lane groups at all intersection approaches for hypothetical massive traffic demand combinations using an objective function of minimizing intersection delay. This finding represents a plausible quick method to predict the optimum lane group in the field instantaneously using the percentage of turning movements at the approach without conducting massive calculations.  相似文献   

9.
Summary A stroke dependent damper is designed for the front axle suspension of a truck. The damper supplies extra damping for inward deflections rising above 4 cm. In this way the damper should reduce extreme suspension deflections without deteriorating the comfort of the truck. But the question is which stroke dependent damping curve yields the best compromise between suspension deflection working space and comfort. Therefore an optimization problem is defined to minimize the maximum inward suspension deflection subject to constraints on the chassis acceleration for three typical road undulations. The optimization problem is solved using sequential linear programming (SLP) and multibody dynamics simulation software. Several optimization runs have been carried out for a small two degree of freedom vehicle model and a large full-scale model of the truck semi-trailer combination. The results show that the stroke dependent damping can reduce large deflections at incidental road disturbances, but that the optimum stroke dependent damping curve is related to the acceleration bound. By means of vehicle model simulation and numerical optimization we have been able to quantify this trade-off between suspension deflection working space and truck comfort.  相似文献   

10.
《JSAE Review》1999,20(1):101-108
Previous studies of safety during vehicle collision pay attention to phenomena in the short time from starting collision, and the behaviour of rollover is studied separately from that at collision. Most simulation of traffic accidents are two-dimensional. Therefore, it is indispensable for vehicle design to analyze three-dimensional and continuous behaviour from crash till stopping. Accordingly, in this study, three-dimensional behaviour of two vehicles at collision is simulated by computer using dynamic models. Here, by comparison of the calculated results with real vehicles' collision test data, it is confirmed that the dynamic model of this study is reliable. It was confirmed in this study that the dynamic model thus established was applicable to various types of collisions and vehicles.  相似文献   

11.
This study proposes a structural design method for an outer tie rod installed in a passenger car. The weight of the outer tie rod is optimized by using the aluminum alloy Al6082M, which is developed as a steel-substitute material, and applying structural optimization techniques. The high strength aluminum with improved mechanical properties was developed to reduce the weight of the outer tie rod. The newly developed aluminum alloy Al6082M is applied as the material of the outer tie rod. The static strength due to inertia force, durability and buckling performances are considered in the structural design of the outer tie rod. At the proto design stage of a new outer tie rod, it is cost-effective to utilize FE (finite element) analysis to predict each of these performances. In addition, the current trend in the structural design of automobile parts is to use optimization techniques to reduce the weights of the parts. First, for an arbitrary base design, the static strength, the life cycle and the buckling load are calculated to check whether the design satisfies its criteria. Then, the critical performance is selected so as to include its loading condition only in the optimization process. In this study, the metamodel based optimization process using kriging is adopted to obtain the minimum weight satisfying the critical design requirement. Then, the feasibility of the determined optimum shape is investigated against the other performances. Finally, the optimum design of outer tie rod is modified by considering forging efficiency. The performances of the final design are investigated through simulation and experiment.  相似文献   

12.
This paper is focused on the kinematic design of double-wishbone suspension systems in vehicles, which is tackled using a multiobjective dimensional synthesis technique. The synthesis goal is to optimise an RSSR–SS linkage, subject to some constraints involved in the dynamic behaviour of vehicles. The synthesis method is based on gradient determination using exact differentiation to obtain the elements in the Jacobian matrix. These characteristics make the method adapt well to the optimum design of vehicle suspension systems. The method is capable of handling equality and inequality constraints, thus, the usual ranges of values may be imposed on the functional parameters. The formulation presented is easy to implement and the solutions obtained demonstrate the accuracy and robustness of the method.  相似文献   

13.
为了加强公交发车时刻与高峰期客流需求波动间的协调性,需要依据实时客流需求进行时刻表优化.根据IC卡采集到的上车乘客数据,分别采用BP神经网络和RBF神经网络算法预测计算得到断面客流量.兼顾优化决策和评价模型,设计完善了基于客流预测的公交时刻表动态优化流程.计算文山市公交线路客流数据,发现案例中采用RBF神经网络预测得到的断面流量精度较BP神经网络高出4.9%.基于RBF神经网络和BP神经网络预测客流需求优化的公交时刻表与现状运行时刻表相比,乘客出行成本分别降低了4.11%和1.35%,企业运营成本分别降低了7.06%和4.60%.定量验证了动态优化方法的可行性和有效性.   相似文献   

14.
分析了运用现有有限元软件进行耐撞击结构拓扑优化设计的基本方法和所涉及的关键问题,对某重型卡车保险杠结构进行了拓扑优化分析与研究,结果表明动态撞击结构拓扑优化设计方法是有效可行的。  相似文献   

15.
In this investigation, an Improved Collaborative Optimization (ICO) method based Multidisciplinary Design Optimization (MDO) framework for front structure of an electric car body-in-white (BIW) is presented. ICO method based on 1-norm and dynamic flabby coefficient, which shows relatively high efficiency and accuracy, is first proposed here and prepared to conduct MDO in this work. Finite element analysis (FEA) results of the baseline design for an integral battery electric car body structure show that its front part needs to be optimized designed in the consideration of full-lap frontal crashworthiness. Selecting the thicknesses of 5 components, with global mass and free basic frequency constraints, a multidisciplinary size optimization problem is implemented using both ICO and standard CO methods combined with OLHS technique, metamodel and SQL algorithm. Optimal scheme based on ICO method is preferred and selected for its better performance compared with result calculated by standard CO method. The energy absorption of redesigned front body structure is finally raised by 14.2 % with 55 iterations.  相似文献   

16.
This study presents the robust design optimization process of suspension system for improving vehicle dynamic performance (ride comfort, handling stability). The proposed design method is so called target cascading method where the design target of the system is cascaded from a vehicle level to a suspension system level. To formalize the proposed method in the view of design process, the design problem structure of suspension system is defined as a (hierarchical) multilevel design optimization, and the design problem for each level is solved using the robust design optimization technique based on a meta-model. Then, In order to verify the proposed design concept, it designed suspension system. For the vehicle level, 44 random variables with 3% of coefficient of variance (COV) were selected and the proposed design process solved the problem by using only 88 exact analyses that included 49 analyses for the initial meta-model and 39 analyses for SAO. For the suspension level, 54 random variables with 10% of COV were selected and the optimal designs solved the problem by using only 168 exact analyses for the front suspension system. Furthermore, 73 random variables with 10% of COV were selected and optimal designs solved the problem by using only 252 exact analyses for the rear suspension system. In order to compare the vehicle dynamic performance between the optimal design model and the initial design model, the ride comfort and the handling stability was analyzed and found to be improved by 16% and by 37%, respectively. This result proves that the suggested design method of suspension system is effective and systematic.  相似文献   

17.
This paper presents the design optimization process of a short fiber-reinforced plastic armrest frame to minimize its weight by replacing the steel frame with a plastic frame. The analysis was carried out with the equivalent mechanical model and design of experiment (DOE) method. Instead of considering the whole structure, it is divided into three simpler regions to reduce the complexity of the problem through examining its structural characteristics and load conditions. The maximum stress and deflection of the regions that carry the normal load are calculated by the analytical mathematical form derived from an equivalent model. The other regions loaded by contact stress are handled by FEM (finite element method), the DOE method, and the RSM (response surface model). To optimize the design variables in both cases, the object functions derived from these calculations are solved with a CAE (computer aided engineering) tool. This method clearly shows the mechanical and mathematical representation of structural optimization and reduces the computing costs. After design optimization, the weight of the optimum plastic-based armrest frame is reduced by about 18% compared to the initial design of a plastic frame and is decreased by 50% in comparison with the steel frame. Some prototypical armrest frames were also made by injection molding and tested. The research results fulfilled all of the design requirements.  相似文献   

18.
梅葵花  吕志涛 《公路》2006,(11):48-53
采用CFRP拉索是解决传统钢拉索腐蚀退化问题的根本途径,由于CFRP的自重仅为钢材的1/5,当跨径很大时,CFRP索斜拉桥的动力特性与钢索斜拉桥的动力特性会有区别,为此,以探索性设计的跨径为1 000 m的CFRP索斜拉桥和钢索斜拉桥为例,采用有限元法对比分析了2种拉索斜拉桥主要的动力特性,并研究了成桥初应力对斜拉桥动力特性的影响。鉴于当前对影响斜拉桥动力特性的一些关键参数少有系统研究的状况,详细分析了不同结构体系、辅助墩设置个数、拉索空间布置型式、边中跨跨径之比等参数,对CFRP索斜拉桥的动力特性的影响,得出了若干结论,为CFRP索斜拉桥的优化设计提供理论依据。  相似文献   

19.
本文首先介绍了单自由度粘性阻尼系统动刚度理论和计算方法,提出通过增加结构局部刚度减少车内噪音的观点,并以某车为例,通过试验发现该车后排轰鸣音问题,利用CAE分析方法找到导致该轰鸣音问题的原因,提出在排气管中通道两侧安装加强板以增加局部刚度的几种NVH优化方案,通过CAE方法分析各种优化方案的动刚度和固有频率,最终确定最佳方案,较好的解决了后排轰鸣音问题。  相似文献   

20.
基于群决策理论和双层规划模型的交通信号控制优化   总被引:2,自引:1,他引:1  
基于干道延误时间最小和路段行程速度最大的设计理念,利用智能优化算法和群决策理论,建立了一种双层规划模型下的城市干道交通信号控制方法。算法结合了智能优化策略中的遗传算法和丰富的群体专家意见,并采用模糊数的描述方式实现对不同控制目标的分析评价,给出了一套完善的干道交通信号配时优化方案,使交通问题的分析得以更加客观和实际。最后给出一个实际主干道问题的算例分析,运用MATLAB和Visual C++编程计算对控制方案进行模拟。仿真结果表明,这一方法能有效地改善延误和路段行程速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号