首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the variability of speed patterns and congestion characteristics of interstate freeway systems caused by holiday traffic is beneficial because appropriate countermeasures for safety improvement and congestion mitigation can be prepared and drivers can avoid traffic congestion and change their holiday travel schedules. This study evaluated the traffic congestion patterns during the Thanksgiving holiday period in 2006 using a Gaussian mixture speed distribution estimated by the Expectation–Maximization (EM) algorithm. This mathematical approach showed the potential of improving freeway operational performance evaluation schemes for holiday periods (even non-holiday periods). This study suggested that a Gaussian mixture model using the EM algorithm could be used to properly characterize the severity and the variability of congestion on certain interstate roadway systems. However, this study also pointed out that the fundamental limitations of the mixture model and the statistical significance test about the mixture components should be well understood and need to be further investigated. In addition, because this study investigated the changing patterns of speed distributions with only one interstate freeway system, I-95 northbound, other freeway systems with both directions need to be evaluated so that a more broad and confident analysis on holiday traffic can be achieved.  相似文献   

2.
It is essential for local traffic jurisdictions to systematically spot freeway bottlenecks and proactively deploy appropriate congestion mitigation strategies. However, diagnostic results may be influenced by unreliable measurements, analysts’ subjective knowledge and day-to-day traffic pattern variations. In order to suitably address these uncertainties and imprecise data, this study proposes a fuzzy-logic-based approach for bottleneck severity diagnosis in urban sensor networks. A dynamic bottleneck identification model is first proposed to identify bottleneck locations, and a fuzzy inference approach is then proposed to systematically diagnose the severities of the identified recurring and non-recurring bottlenecks by incorporating expert knowledge of local traffic conditions. Sample data over a 1-month period on an urban freeway in Northern Virginia was used as a case study for the analysis. The results reveal that the proposed approach can reasonably determine bottleneck severities and critical links, accounting for both spatial and temporal factors in a sensor network.  相似文献   

3.
One source of vehicle conflict is the freeway weaving section, where a merge and diverge in close proximity require vehicles either entering or exiting the freeway to execute one or more lane changes. Using accident data for a portion of Southern California, we examined accidents that occurred on three types of weaving sections defined in traffic engineering: Type A, where every merging or diverging vehicle must execute one lane change, Type B, where either merging or diverging can be done without changing lanes, and Type C, where one maneuver requires at least two lane changes. We found no difference among these three types in terms of overall accident rates for 55 weaving sections over one year (1998). However, there were significant differences in terms of the types of accidents that occur within these types in terms of severity, and location of the primary collision, the factors causing the accident, and the time period in which the accident is most likely to occur. These differences in aspects of safety lead to implications for traffic engineering improvements.  相似文献   

4.
Ramp meters in the Twin Cities have been the subject of a recent test of their effectiveness, involving turning them off for eight weeks. This paper analyzes the results with and without ramp metering for several representative freeways during the afternoon peak period. Seven performance measures: mobility, equity, productivity, consumers’ surplus, accessibility, travel time variation and travel demand responses are compared. It is found that ramp meters are particularly helpful for long trips relative to short trips. Ramp metering, while generally beneficial to freeway segments, may not improve trip travel times (including ramp delays). The reduction in travel time variation comprises another benefit from ramp meters. Non-work trips and work trips respond differently to ramp meters. The results are mixed, suggesting a more refined ramp control algorithm, which explicitly considers ramp delay, is in order.  相似文献   

5.
文章结合高速公路发展现状,系统地阐述了高速公路上客车停靠站建设的必要性,并根据高速公路的特点,研究了停靠站点的基本类型,分析了停靠站的线形及横断面几何设计方法。  相似文献   

6.
ABSTRACT

Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performance Measurement System (PeMS). To obtain valid results, various driving behavior parameters are calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is conducted using genetic algorithm. A revised Intelligent Driver Model (IDM) is developed and used as the car-following model for CAVs. The simulation is conducted on the basic freeway segment under different penetration rates of CAVs and different freeway speed limits. The results show that with an increase in the market penetration rate, freeway capacity increases, and will increase significantly as the speed limit increases.  相似文献   

7.
The notion of capacity is essential to the planning, design, and operations of freeway systems. However, in the practice freeway capacity is commonly referred as a theoretical/design value without consideration of operational characteristics of freeways. This is evident from the Highway Capacity Manual (HCM) 2000 in that no influence from downstream traffic is considered in the definition of freeway capacity. In contrast to this definition, in this paper, we consider the impact of downstream traffic and define freeway operational capacity as the maximum hourly rate at which vehicles can be expected to traverse a point or a uniform section of a roadway under prevailing traffic flow conditions. Therefore freeway operational capacity is not a single value with theoretical notion. Rather, it changes under different traffic flow conditions. Specifically, this concept addresses the capacity loss during congested traffic conditions. We further study the stochasticity of freeway operational capacity by examining loop detector data at three specifically selected detector stations in the Twin Cities’ area. It is found that values of freeway operational capacity under different traffic flow conditions generally fit normal distributions. In recognition of the stochastic nature of freeway capacity, we propose a new chance-constrained ramp metering strategy, in which, constant capacity value is replaced by a probabilistic one that changes dynamically depending on real-time traffic conditions and acceptable probability of risk determined by traffic engineers. We then improve the Minnesota ZONE metering algorithm by applying the stochastic chance constraints and test the improved algorithm through microscopic traffic simulation. The evaluation results demonstrate varying degrees of system improvement depending on the acceptable level of risk defined.  相似文献   

8.
A multilevel decentralized control scheme, the cascading technique, with application to the regulation of traffic on an urban freeway is presented. Performance of the decentralized system is compared to the performance of a centralized and a fixed time control structure. It is shown that the decentralized structure performs better than the centralized structure when incidents (lane closures) occur on the freeway. The freeway is modeled in terms of the aggregate variables section density and section speed, and is considered as a system of interconnected subsystems.  相似文献   

9.
Auxiliary lanes connecting freeway entrance and exit ramps provide additional space for entering and exiting vehicles to change lanes. The method of dropping auxiliary lanes is critical in the design of freeway auxiliary lanes. This study investigates the performance of different methods of dropping auxiliary lanes. Case studies were conducted at two selected freeway segments with successive entrance or exit ramps in the City of Houston. Traffic simulation analysis results of these two case studies show that additional operational benefits can be achieved by extending an auxiliary lane beyond the freeway weaving segment. The study also found that if the weaving segment is followed by an entrance/exit ramp and this ramp has high traffic volume, it can be less operationally favorable to extend and terminate the auxiliary lane at this entrance/exit ramp location. Instead, dropping the auxiliary lane before this entrance/exit ramp represents a more operationally effective option.  相似文献   

10.
This study evaluates the expected benefits of using the ALINEA ramp metering algorithm as a method for real-time safety improvement on an urban freeway. The objective of this research is to use ramp metering to produce a significant decrease in the risk of crashes on the freeway while avoiding any significant adverse effects on operation. This is achieved by simulating the freeway during the congested period in micro-simulation and testing various ramp metering configurations to determine which provides the best results. Statistical measures developed for the same stretch of freeway using loop detector data are used to quantify the risk of crashes as well as the benefits in each of the alternative strategies. The study concludes that there are significant benefits in metering multiple ramps when the feedback ramp metering algorithm is implemented at multiple locations. It was found that increasing the number of metered on-ramps produces increasing safety benefits. Also, a shorter cycle length for each of the meters and a higher critical occupancy value leads to better results.  相似文献   

11.
A simple model of traffic flow is used to analyze the spatio-temporal distribution of flow and density on closed-loop homogeneous freeways with many ramps, which produce inflows and allow outflows. As we would expect, if the on-ramp demand is space-independent then this distribution tends toward uniformity in space if the freeway is either: (i) uncongested; or (ii) congested with queues on its on-ramps and enough inflow to cause the average freeway density to increase with time. In all other cases, however, including any recovery phase of a rush hour where the freeway’s average density declines, the distribution of flow and density quickly becomes uneven. This happens even under conditions of perfect symmetry, where the percentage of vehicles exiting at every off ramp is the same. The flow-density deviations from the average are shown to grow exponentially in time and propagate backwards in space with a fixed wave speed. A consequence of this type of instability is that, during recovery, gaps of uncongested traffic will quickly appear in the unevenly congested stream, reducing average flow. This extends the duration of recovery and invariably creates clockwise hysteresis loops on scatter-plots of average system flow vs. density during any rush hour that oversaturates the freeway. All these effects are quantified with formulas and verified with simulations. Some have been observed in real networks. In a more practical vein, it is also shown that the negative effects of instability diminish (i.e., freeway flows increase) if (a) some drivers choose to exit the freeway prematurely when it is too congested and/or (b) freeway access is regulated in a certain traffic-responsive way. These two findings could be used to improve the algorithms behind VMS displays for driver guidance (finding a), and on-ramp metering rates (finding b).  相似文献   

12.
This paper explores the historical trends in freeway traffic management technology in the U.S., and the most likely projections for the coming two decades. First, existing computer‐supervised freeway surveillance and control techniques are reviewed with particular emphasis on the scientific and technological landmarks which has led to the evolution of these techniques. Next, the major underlying trends which bear on the future of automated freeway surveillance and control are identified. Finally, extrapolative projections are made to determine the most likely future of this technology. The paper concludes with implications for the issues of meeting short‐term transportation needs of urban areas through more efficient use of existing transportation facilities.  相似文献   

13.
An approach based on cell transmission model (CTM) is proposed to estimate the impact of variable free-flow speeds (FFS) on the performance of a freeway system. Based on the basic CTM, four typical freeway control strategies consisting of non control, local ramp metering, coordinated ramp metering and global control are first formulated. Then the method of adjusting model parameters to the changed free-flow speeds is presented. Among the adjustments, an experimental function based on Fan and Seibold (2014) is proposed to change the jam density. Several useful measures are defined to estimate and compare the performances of different freeways. The following three main observations are obtained from numerical experiments. (a) With the gradually increasing FFS, the throughput of freeway will increase at the beginning and then change to decrease. (b) With the increasing FFS, the average delay of vehicles will decrease at the beginning and then change to increase. (c) A series of free-flow speeds associate with the best performance of freeway. These observations are theoretically analyzed through investigating the location and capacity of bottleneck. Study shows that in general the actual bottleneck capacity will increase at the beginning and then change to decrease with the continually increasing FFS. In view of the positive correlation between traffic delay and bottleneck capacity, the theoretical analysis confirms the numerical observations. The findings of this study can deepen the understanding of freeway systems and help management agents adopt proper measures to improve the performance of the whole system.  相似文献   

14.
A major source of urban freeway delay in the U.S. is non-recurring congestion caused by incidents. The automated detection of incidents is an important function of a freeway traffic management center. A number of incident detection algorithms, using inductive loop data as input, have been developed over the past several decades, and a few of them are being deployed at urban freeway systems in major cities. These algorithms have shown varying degrees of success in their detection performance. In this paper, we present a new incident detection technique based on artificial neural networks (ANNs). Three types of neural network models, namely the multi-layer feedforward (MLF), the self-organizing feature map (SOFM) and adaptive resonance theory 2 (ART2), were developed to classify traffic surveillance data obtained from loop detectors, with the objective of using the classified output to detect lane-blocking freeway incidents. The models were developed with simulation data from a study site and tested with both simulation and field data at the same site. The MLF was found to have the highest potential, among the three ANNs, to achieve a better incident detection performance. The MLF was also tested with limited field data collected from three other freeway locations to explore its transferability. Our results and analyzes with data from the study site as well as the three test sites have shown that the MLF consistently detected most of the lane-blocking incidents and typically gave a false alarm rate lower than the California, McMaster and Minnesota algorithms currently in use.  相似文献   

15.
The paper proposes a first-order macroscopic stochastic dynamic traffic model, namely the stochastic cell transmission model (SCTM), to model traffic flow density on freeway segments with stochastic demand and supply. The SCTM consists of five operational modes corresponding to different congestion levels of the freeway segment. Each mode is formulated as a discrete time bilinear stochastic system. A set of probabilistic conditions is proposed to characterize the probability of occurrence of each mode. The overall effect of the five modes is estimated by the joint traffic density which is derived from the theory of finite mixture distribution. The SCTM captures not only the mean and standard deviation (SD) of density of the traffic flow, but also the propagation of SD over time and space. The SCTM is tested with a hypothetical freeway corridor simulation and an empirical study. The simulation results are compared against the means and SDs of traffic densities obtained from the Monte Carlo Simulation (MCS) of the modified cell transmission model (MCTM). An approximately two-miles freeway segment of Interstate 210 West (I-210W) in Los Ageles, Southern California, is chosen for the empirical study. Traffic data is obtained from the Performance Measurement System (PeMS). The stochastic parameters of the SCTM are calibrated against the flow-density empirical data of I-210W. Both the SCTM and the MCS of the MCTM are tested. A discussion of the computational efficiency and the accuracy issues of the two methods is provided based on the empirical results. Both the numerical simulation results and the empirical results confirm that the SCTM is capable of accurately estimating the means and SDs of the freeway densities as compared to the MCS.  相似文献   

16.
A simple exercise in data analysis showed that, in queued traffic, a well-defined relation exists between the flow on a homogeneous freeway segment and the segment’s vehicle accumulation. The exercise consisted of constructing cumulative vehicle arrival curves to measure the flows and densities on multiple segments of a queued freeway. At this particular site, each interchange enveloped by the queue exhibited a higher on-ramp flow than off-ramp flow and as a consequence, motorists encountered a steady improvement in traffic conditions (e.g., reduced densities and increased speeds) as they traveled from the tail of the queue to the bottleneck. This finding has practical implications for freeway traffic planning and management. Perhaps most notably, it suggests that the first-order hydrodynamic theory of traffic is adequate for describing some of the more relevant features of queue evolution. This and other practical issues are discussed in some detail.  相似文献   

17.
This paper considers the problem of freeway incident detection within the general framework of computer‐based freeway surveillance and control. A new approach to the detection of freeway traffic incidents is presented based on a discrete‐time stochastic model of the form ARIMA (0, 1, 3) that describes the dynamics of traffic occupancy observations. This approach utilizes real‐time estimates of the variability in traffic occupancies as detection thresholds, thus eliminating the need for threshold calibration and lessening the problem of false‐alarms. Because the moving average parameters of the ARIMA (0, 1, 3) model change over time, these parameters can be updated occasionally. The performance of the developed detection algorithm has been evaluated in terms of detection rate, false‐alarm rate, and average time‐lag to detection, using a total of 1692 minutes of occupancy observations recorded during 50 representative traffic incidents.  相似文献   

18.
Currently most optimization methods for urban transport networks (i) are suited for networks with simplified dynamics that are far from real-sized networks or (ii) apply decentralized control, which is not appropriate for heterogeneously loaded networks or (iii) investigate good-quality solutions through micro-simulation models and scenario analysis, which make the problem intractable in real time. In principle, traffic management decisions for different sub-systems of a transport network (urban, freeway) are controlled by operational rules that are network specific and independent from one traffic authority to another. In this paper, the macroscopic traffic modeling and control of a large-scale mixed transportation network consisting of a freeway and an urban network is tackled. The urban network is partitioned into two regions, each one with a well-defined Macroscopic Fundamental Diagram (MFD), i.e. a unimodal and low-scatter relationship between region density and outflow. The freeway is regarded as one alternative commuting route which has one on-ramp and one off-ramp within each urban region. The urban and freeway flow dynamics are formulated with the tool of MFD and asymmetric cell transmission model, respectively. Perimeter controllers on the border of the urban regions operating to manipulate the perimeter interflow between the two regions, and controllers at the on-ramps for ramp metering are considered to control the flow distribution in the mixed network. The optimal traffic control problem is solved by a Model Predictive Control (MPC) approach in order to minimize total delay in the entire network. Several control policies with different levels of urban-freeway control coordination are introduced and tested to scrutinize the characteristics of the proposed controllers. Numerical results demonstrate how different levels of coordination improve the performance once compared with independent control for freeway and urban network. The approach presented in this paper can be extended to implement efficient real-world control strategies for large-scale mixed traffic networks.  相似文献   

19.
The paper presents a unified macroscopic model-based approach to real-time freeway network traffic surveillance as well as a software tool RENAISSANCE that has been recently developed to implement this approach for field applications. RENAISSANCE is designed on the basis of stochastic macroscopic freeway network traffic flow modeling, extended Kalman filtering, and a number of traffic surveillance algorithms. Fed with a limited amount of real-time traffic measurements, RENAISSANCE enables a number of freeway network traffic surveillance tasks, including traffic state estimation and short-term traffic state prediction, travel time estimation and prediction, queue tail/head/length estimation and prediction, and incident alarm. The traffic state estimation and prediction lay the operating foundation of RENAISSANCE since RENAISSANCE bases the other traffic surveillance tasks on its traffic state estimation or prediction results. The paper first introduces the utilized stochastic macroscopic freeway network traffic flow model and a real-time traffic measurement model, upon which the complete dynamic system model of RENAISSANCE is established with special attention to the handling of some important model parameters. The algorithms for the various traffic surveillance tasks addressed are described along with the functional architecture of the tool. A simulation test was conducted via application of RENAISSANCE to a hypothetical freeway network example with a sparse detector configuration, and the testing results are presented in some detail. Final conclusions and future work are outlined.  相似文献   

20.
This paper documents the development of a simple method for identifying and/or predicting freeway congestion using single loop detection systems. The proposed algorithm is simple and easy to incorporate into most freeway management systems. The Washington State Department of Transportation's Traffic Systems Management Center (TSMC) sponsored the original study. The investigation also led to a recommendation to replace the original TSMC definition of congestion or forced flow conditions with a more reliable indicator. Although, the TSMC has recently implemented a more advanced prediction system based on fuzzy set theory and neural networks to further identify patterns and rules for ramp metering strategies, the findings presented here continue to be constructive to freeway managers looking for quick and easy analyses that rely solely on single‐loop detection systems. The Seattle Area freeway study section used for the original study was the portion of mainline 1–5 northbound starting at the downtown Seattle Station 108 and ending at the Mountlake Terrace Station 193. Several days' worth of volume and lane‐occupancy data were collected for the afternoon time period from 2:30 p.m. to 6:30 p.m. Time intervals of 20 seconds were chosen for each data collection period. Important products of this research include the following:
  • simple, and more reliable criterion for the definition of “bottleneck” or forced flow conditions than that originally used by the TSMC.
  • simple, and reliable criterion for predicting impending “bottlenecks” or forced flow conditions.
  • A proposed variable for improved selection of the appropriate metering rate. (Further analysis of the use of this variable for determining metering rates is recommended for future studies.
The proposed criteria are simple and easy to incorporate into current freeway management computer systems. Further investigation of freeway performance measurement using volume and occupancy data obtained from single‐loop systems is currently being performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号