首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An integrated approach is suggested for the planning and evaluation of mass transport systems which includes a bus network and LRT/RTS in urban areas. This approach involves a simplified procedure for determining mass transit demand, bus route network generation and evaluation, light or rapid transit corridor identification and its patronage determination in the presence of bus networks. Scheduling of a mass transportation system based on marginal ridership concept is also suggested for a given fleet size. All the three major components (demand estimation, route network generation and scheduling) iterate and interact each other with a feedback mechanism for the desired optimal solution in terms of performance indicators. Necessary interactive software packages for all the above subsystems have been developed.  相似文献   

2.
Recent earthquake disasters have caused major damage to transportation networks, leading to significant economic disruption. While this suggests the need to evaluate total system performance in transportation risk assessment, in addition to examining the vulnerability of individual components such as bridges, no appropriate measures currently exist. This paper develops post-disaster system performance measures and applies them to the urban rail and highway transportation systems in the Kobe, Japan, region devastated by the 1995 Hyogoken–Nanbu earthquake. Performance is evaluated in terms of network coverage and transport accessibility. Performance degradation was much more severe for highways and railways than for other lifeline infrastructure systems. Both transportation systems fared poorly in the disaster but service restoration proceeded much more rapidly for rail. The restoration of highway system performance correlated closely with the recovery of highway traffic volumes. The paper further develops a measure of subarea transport accessibility and applies this to Kobe’s constituent city wards. Results indicate substantial spatial disparity that is maintained throughout the restoration period. Comparisons with the 1989 Loma Prieta and 1994 Northridge earthquakes in the US show that although these disasters caused notable damage to highway bridges, system performance degradation was small in comparison with the Kobe experience. The paper argues that explicitly measuring transportation system performance can greatly facilitate both understanding the effects of historic disasters and preparing for future hazard events.  相似文献   

3.
Intelligent Transport Systems (ITS) have a wide range of applications. They range from the more traditional signal coordination system to concepts such as smart cars and smart roads. This paper describes transit‐based ITS measures in Singapore. The island‐state has plans to double the current 90 km rail network over the next ten years and has also implemented or committed to implement many ITS initiatives that impact upon the public transport systems. The aim of these investments is to achieve a high transit modal share using a comprehensive transit network. ITS measures that can promote this aim include: automatic vehicle location systems for buses and taxis, integrated transit fare systems using contactless smart cards, rail information systems, multi‐modal travel guides on Internet and electronic road pricing. The potential impacts of these measures are delay reduction, more comfort, productivity gain and better network accessibility. ITS measures do not necessarily add physical capacity to a public transport system but are excellent supporting measures to encourage the modal shift to transit, particularly if a quality transit system is already in place.  相似文献   

4.
This paper develops a reliability-based formulation for rapid transit network design under demand uncertainty. We use the notion of service reliability to confine the stochastic demand into a bounded uncertainty set that the rapid transit network is designed to cover. To evaluate the outcome of the service reliability chosen, flexible services are introduced to carry the demand overflow that exceeds the capacity of the rapid transit network such designed. A two-phase stochastic program is formulated, in which the transit line alignments and frequencies are determined in phase 1 for a specified level of service reliability; whereas in phase 2, flexible services are determined depending on the demand realization to capture the cost of demand overflow. Then the service reliability is optimized to minimize the combined rapid transit network cost obtained in phase 1, and the flexible services cost and passenger cost obtained in phase 2. The transit line alignments and passenger flows are studied under the principles of system optimal (SO) and user equilibrium (UE). We then develop a two-phase solution algorithm that combines the gradient method and neighborhood search and apply it to a series of networks. The results demonstrate the advantages of utilizing the two-phase formulation to determine the service reliability as compared with the traditional robust formulation that pre-specifies a robustness level.  相似文献   

5.
Public transit structure is traditionally designed to contain fixed bus routes and predetermined bus stations. This paper presents an alternative flexible-route transit system, in which each bus is allowed to travel across a predetermined area to serve passengers, while these bus service areas collectively form a hybrid “grand” structure that resembles hub-and-spoke and grid networks. We analyze the agency and user cost components of this proposed system in idealized square cities and seek the optimum network layout, service area of each bus, and bus headway, to minimize the total system cost. We compare the performance of the proposed transit system with those of comparable systems (e.g., fixed-route transit network and taxi service), and show how each system is advantageous under certain passenger demand levels. It is found out that under low-to-moderate demand levels, the proposed flexible-route system tends to have the lowest system cost.  相似文献   

6.
Robust public transport networks are important, since disruptions decrease the public transport accessibility of areas. Despite this importance, the full passenger impacts of public transport network vulnerability have not yet been considered in science and practice. We have developed a methodology to identify the most vulnerable links in the total, multi-level public transport network and to quantify the societal costs of link vulnerability for these identified links. Contrary to traditional single-level network approaches, we consider the integrated, total multi-level PT network in the identification and quantification of link vulnerability, including PT services on other network levels which remain available once a disturbance occurs. We also incorporate both exposure to large, non-recurrent disturbances and the impacts of these disturbances explicitly when identifying and quantifying link vulnerability. This results in complete and realistic insights into the negative accessibility impacts of disturbances. Our methodology is applied to a case study in the Netherlands, using a dataset containing 2.5 years of disturbance information. Our results show that especially crowded links of the light rail/metro network are vulnerable, due to the combination of relatively high disruption exposure and relatively high passenger flows. The proposed methodology allows quantification of robustness benefits of measures, in addition to the costs of these measures. Showing the value of robustness, our work can support and rationalize the decision-making process of public transport operators and authorities regarding the implementation of robustness measures.  相似文献   

7.
Traditionally, an assessment of transport network vulnerability is a computationally intensive operation. This article proposes a sensitivity analysis-based approach to improve computational efficiency and allow for large-scale applications of road network vulnerability analysis. Various vulnerability measures can be used with the proposed method. For illustrative purposes, this article adopts the relative accessibility index (AI), which follows the Hansen integral index, as the network vulnerability measure for evaluating the socio-economic effects of link (or road segment) capacity degradation or closure. Critical links are ranked according to the differences in the AIs between normal and degraded networks. The proposed method only requires a single computation of the network equilibrium problem. The proposed technique significantly reduces computational burden and memory storage requirements compared with the traditional approach. The road networks of the Sioux Falls city and the Bangkok metropolitan area are used to demonstrate the applicability and efficiency of the proposed method. Network manager(s) or transport planner(s) can use this approach as a decision support tool for identifying critical links in road networks. By improving these critical links or constructing new bypass roads (or parallel paths) to increase capacity redundancy, the overall vulnerability of the networks can be reduced.  相似文献   

8.
The broad goal of this paper is to characterize the network feature of metro systems. By looking at 33 metro systems in the world, we adapt various concepts of graph theory to describe characteristics of State, Form and Structure; these three characteristics are defined using new or existing network indicators. State measures the complexity of a network; we identify three phases in the development of transit networks, with mature systems being 66% completely connected. Form investigates the link between metro systems and the built environment, distinguishing networks oriented towards regional accessibility, local coverage or regional coverage. Structure examines the intrinsic properties of current networks; indicators of connectivity and directness are formulated. The method presented is this paper should be taken as a supplement to traditional planning factors such as demand, demography, geography, costs, etc. It is particularly useful at the strategic planning phase as it offers information on current and planned systems, which can then be used towards setting a vision, defining new targets and making decision between various scenarios; it can also be used to compare existing systems. We also link the three characteristics to transit line type and land-use; overall the presence of tangential and/or (semi)-circumferential lines may be key. In addition, we have been able to identify paths of development, which should be strongly considered in future projects.  相似文献   

9.
Many national governments around the world have turned their recent focus to monitoring the actual reliability of their road networks. In parallel there have been major research efforts aimed at developing modelling approaches for predicting the potential vulnerability of such networks, and in forecasting the future impact of any mitigating actions. In practice—whether monitoring the past or planning for the future—a confounding factor may arise, namely the potential for systematic growth in demand over a period of years. As this growth occurs the networks will operate in a regime closer to capacity, in which they are more sensitive to any variation in flow or capacity. Such growth will be partially an explanation for trends observed in historic data, and it will have an impact in forecasting too, where we can interpret this as implying that the networks are vulnerable to demand growth. This fact is not reflected in current vulnerability methods which focus almost exclusively on vulnerability to loss in capacity. In the paper, a simple, moment-based method is developed to separate out this effect of demand growth on the distribution of travel times on a network link, the aim being to develop a simple, tractable, analytic method for medium-term planning applications. Thus the impact of demand growth on the mean, variance and skewness in travel times may be isolated. For given critical changes in these summary measures, we are thus able to identify what (location-specific) level of demand growth would cause these critical values to be exceeded, and this level is referred to as Demand Growth Reliability Vulnerability (DGRV). Computing the DGRV index for each link of a network also allows the planner to identify the most vulnerable locations, in terms of their ability to accommodate growth in demand. Numerical examples are used to illustrate the principles and computation of the DGRV measure.  相似文献   

10.
Public transit systems with high occupancy can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but current transit systems have not been designed to reduce environmental impacts. This motivates the study of the benefits of design and operational approaches for reducing the environmental impacts of transit systems. For example, transit agencies may replace level-of-service (LOS) by vehicle miles traveled (VMT) as a criterion in evaluating design and operational changes. In previous work, we explored the unintended consequences of lowering transit LOS on emissions in a single-technology transit system. Herein, we extend the analysis to account for a more realistic case: a transit system with a hierarchical structure (trunk and feeder lines) providing service to a city where demand is elastic. By considering the interactions between the trunk and the feeder systems, we provide a quantitative basis for designing and operating integrated urban transit systems that can reduce GHG emissions and societal costs. We find that highly elastic transit demand may cancel emission reduction potentials resulting from lowering LOS, due to demand shifts to lower occupancy vehicles. However, for mass transit modes, these potentials are still significant. Transit networks with buses, bus rapid transit or light rail as trunk modes should be designed and operated near the cost-optimal point when the demand is highly elastic, while this is not required for metro. We find that the potential for unintended consequences increases with the size of the city. Our results are robust to uncertainties in the costs and emissions parameters.  相似文献   

11.
Transit systems are subject to congestion that influences system performance and level of service. The evaluation of measures to relieve congestion requires models that can capture their network effects and passengers' adaptation. In particular, on‐board congestion leads to an increase of crowding discomfort and denied boarding and a decrease in service reliability. This study performs a systematic comparison of alternative approaches to modelling on‐board congestion in transit networks. In particular, the congestion‐related functionalities of a schedule‐based model and an agent‐based transit assignment model are investigated, by comparing VISUM and BusMezzo, respectively. The theoretical background, modelling principles and implementation details of the alternative models are examined and demonstrated by testing various operational scenarios for an example network. The results suggest that differences in modelling passenger arrival process, choice‐set generation and route choice model yield systematically different passenger loads. The schedule‐based model is insensitive to a uniform increase in demand or decrease in capacity when caused by either vehicle capacity or service frequency reduction. In contrast, nominal travel times increase in the agent‐based model as demand increases or capacity decreases. The marginal increase in travel time increases as the network becomes more saturated. Whilst none of the existing models capture the full range of congestion effects and related behavioural responses, existing models can support different planning decisions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Climate change (CC) potentially affects people travel behaviour, due to extreme weather conditions. This is particularly true for pedestrians, that are more exposed to weather conditions. Introducing the effect of this change in transport modelling allows to analyse and plan walking networks taking into consideration the climatic variable. The aim of this work is to develop a tool that can support planning and design of walking networks, by assessing the effects of actions oriented to increase resilience with respect to extreme weather conditions (CC adaptation).An integrated approach is used, thus combining transport and land-use planning concepts with elements of outdoor thermal comfort and network accessibility. Walking networks are analysed through centrality indexes, including thermal comfort aspects into a general cost function of links and weighted nodes. The method has been applied to the walking network inside the Campus of the University of Catania (Italy), which includes different functions and where pedestrian paths are barely used by people. Results confirm that this tool is sensitive to the variables representing weather conditions and it can measure the influence of CC adaptation measures (e.g. vegetation) on walking attitude and on the performance of the walking network.  相似文献   

13.
This paper is an attempt to develop a generic simulation‐based approach to assess transit service reliability, taking into account interaction between network performance and passengers' route choice behaviour. Three types of reliability, say, system wide travel time reliability, schedule reliability and direct boarding waiting‐time reliability are defined from perspectives of the community or transit administration, the operator and passengers. A Monte Carlo simulation approach with a stochastic user equilibrium transit assignment model embedded is proposed to quantify these three reliability measures of transit service. A simple transit network with a bus rapid transit (BRT) corridor is analysed as a case study where the impacts of BRT components on transit service reliability are evaluated preliminarily.  相似文献   

14.
This paper proposes an enhanced measure of accessibility that explicitly considers circumstances in which the capacity of the transport infrastructure is limited. Under these circumstances, passengers may suffer longer waiting times, resulting in the delay or cancellation of trips. Without considering capacity constraints, the standard measure overestimates the accessibility contribution of transport infrastructure. We estimate the expected waiting time and the probability of forgoing trips based on the M/GB/1 type of queuing and discrete-event simulation, and formally incorporate the impacts of capacity constraints into a new measure: capacity constrained accessibility (CCA). To illustrate the differences between CCA and standard measures of accessibility, this paper estimates the accessibility change in the Beijing–Tianjin corridor due to the Beijing–Tianjin intercity high-speed railway (BTIHSR). We simulate and compare the CCA and standard measures in five queuing scenarios with varying demand patterns and service headway assumptions. The results show that (1) under low system loads condition, CCA is compatible with and absorbs the standard measure as a special case; (2) when demand increases and approaches capacity, CCA declines significantly; in two quasi-real scenarios, the standard measure overestimates the accessibility improvement by 14–30 % relative to the CCA; and (3) under the scenario with very high demand and an unreliable timetable, the CCA is almost reduced to the pre-BTIHSR level. Because the new CCA measure effectively incorporates the impact of capacity constraints, it is responsive to different arrival rules, service distributions, and system loads, and therefore provides a more realistic representation of accessibility change than the standard measure.  相似文献   

15.
This paper focuses on measuring of the expected locational accessibility (ELA) of urban transit networks for commuters. The ELA of the transit network is measured by a factor named expected locational accessibility index (ELAI), which is calculated based on the expected number of reachable stations with different times of transfers (ENRST) starting from any one transit station on the network. Two approaches, the sample-test-statistics method and the topological analysis method for determining the ENRST are proposed and tested with an example transit network. Finally, the proposed methods are applied to an empirical study for evaluating the ELA performance of bus transit network for commuters of Xiamen City, China. The empirical results show that the ELAI obtained by our two methods are relatively smaller than those obtained by the existing methods. The reason is analyzed to guarantee the accuracy of ELAI measurement.  相似文献   

16.
The stability of road networks has become an increasingly important issue in recent times, since the value of time has increased considerably and unexpected delay can results in substantial loss to road users. Road network reliability has now become an important performance measure for evaluating road networks, especially when considering changes in OD traffic demand and link flow capacity over time. This paper outlines the basic concepts, remaining problems and future directions of road network reliability analysis. There are two common definitions of road network reliability, namely, connectivity reliability and travel time reliability. As well, reliability analysis is generally undertaken in both normal and abnormal situations. In order to analyse the reliability of a road network, the reliability of the links within the network must be first determined. A method for estimating the reliability of links within road networks is also suggested in this paper.  相似文献   

17.
A utility-based travel impedance measure is developed for public transit modes that is capable of capturing the passengers’ behaviour and their subjective perceptions of impedance when travelling in the transit networks. The proposed measure is time-dependent and it estimates the realisation of the travel impedance by the community of passengers for travelling between an origin–destination (OD) pair.The main advantage of the developed measure, as compared to the existing transit impedance measures, relates to its capability in capturing the diversity benefit that the transit systems may offer the society of travellers with different traveling preferences. To clarify the necessity of such capability, we demonstrate the randomness (subjectivity) of travel impedance perceived by transit passengers, through evidence from the observed path choices made in the transit network of the greater Brisbane metropolitan region in Australia.The proposed impedance measure is basically a nested logit “logsum” composition over a generated set of reasonable path options whose systematic utilities are evaluated based on a discrete choice model previously developed and calibrated for the greater Brisbane transit passengers. As a case study, the proposed impedance measure is calculated for all the origin blocks in the Brisbane area, during the morning commutes to the Central Business District (CBD). The results are presented and discussed, and intuitive and important advantages are demonstrated for the proposed measure.  相似文献   

18.
This paper presents an integrated transit-oriented travel demand modeling procedure within the framework of geographic information systems (GIS). Focusing on transit network development, this paper presents both the procedure and algorithm for automatically generating both link and line data for transit demand modeling from the conventional street network data using spatial analysis and dynamic segmentation. For this purpose, transit stop digitizing, topology and route system building, and the conversion of route and stop data into link and line data sets are performed. Using spatial analysis, such as the functionality to search arcs nearest from a given node, the nearest stops are identified along the associated links of the transit line, while the topological relation between links and line data sets can also be computed using dynamic segmentation. The advantage of this approach is that street map databases represented by a centerline can be directly used along with the existing legacy urban transportation planning systems (UTPS) type travel modeling packages and existing GIS without incurring the additional cost of purchasing a full-blown transportation GIS package. A small test network is adopted to demonstrate the process and the results. The authors anticipate that the procedure set forth in this paper will be useful to many cities and regional transit agencies in their transit demand modeling process within the integrated GIS-based computing environment.  相似文献   

19.
Connectivity plays a crucial role as agencies at the federal and state level focus on expanding the public transit system to meet the demands of a multimodal transportation system. Transit agencies have a need to explore mechanisms to improve connectivity by improving transit service. This requires a systemic approach to develop measures that can prioritize the allocation of funding to locations that provide greater connectivity, or in some cases direct funding towards underperforming areas. The concept of connectivity is well documented in social network literature and to some extent, transportation engineering literature. However, connectivity measures have limited capability to analyze multi-modal public transportation systems which are much more complex in nature than highway networks.In this paper, we propose measures to determine connectivity from a graph theoretical approach for all levels of transit service coverage integrating routes, schedules, socio-economic, demographic and spatial activity patterns. The objective of using connectivity as an indicator is to quantify and evaluate transit service in terms of prioritizing transit locations for funding; providing service delivery strategies, especially for areas with large multi-jurisdictional, multi-modal transit networks; providing an indicator of multi-level transit capacity for planning purposes; assessing the effectiveness and efficiency for node/stop prioritization; and making a user friendly tool to determine locations with highest connectivity while choosing transit as a mode of travel. An example problem shows how the graph theoretical approach can be used as a tool to incorporate transit specific variables in the indicator formulations and compares the advantage of the proposed approach compared to its previous counterparts. Then the proposed framework is applied to the comprehensive transit network in the Washington–Baltimore region. The proposed analysis offers reliable indicators that can be used as tools for determining the transit connectivity of a multimodal transportation network.  相似文献   

20.
To assess the vulnerability of congested road networks, the commonly used full network scan approach is to evaluate all possible scenarios of link closure using a form of traffic assignment. This approach can be computationally burdensome and may not be viable for identifying the most critical links in large-scale networks. In this study, an “impact area” vulnerability analysis approach is proposed to evaluate the consequences of a link closure within its impact area instead of the whole network. The proposed approach can significantly reduce the search space for determining the most critical links in large-scale networks. In addition, a new vulnerability index is introduced to examine properly the consequences of a link closure. The effects of demand uncertainty and heterogeneous travellers’ risk-taking behaviour are explicitly considered. Numerical results for two different road networks show that in practice the proposed approach is more efficient than traditional full scan approach for identifying the same set of critical links. Numerical results also demonstrate that both stochastic demand and travellers’ risk-taking behaviour have significant impacts on network vulnerability analysis, especially under high network congestion and large demand variations. Ignoring their impacts can underestimate the consequences of link closures and misidentify the most critical links.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号