首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Utilizing daily ridership data, literature has shown that adverse weather conditions have a negative impact on transit ridership and in turn, result in revenue loss for the transit agencies. This paper extends this discussion by using more detailed hourly ridership data to model the weather effects. For this purpose, the daily and hourly subway ridership from New York City Transit for the years 2010–2011 is utilized. The paper compares the weather impacts on ridership based on day of week and time of day combinations and further demonstrates that the weather’s impact on transit ridership varies based on the time period and location. The separation of ridership models based on time of day provides a deeper understanding of the relationship between trip purpose and weather for transit riders. The paper investigates the role of station characteristics such as weather protection, accessibility, proximity and the connecting bus services by developing models based on station types. The findings indicate substantial differences in the extent to which the daily and hourly models and the individual weather elements are able to explain the ridership variability and travel behavior of transit riders. By utilizing the time of day and station based models, the paper demonstrates the potential sources of weather impact on transit infrastructure, transit service and trip characteristics. The results suggest the development of specific policy measures which can help the transit agencies to mitigate the ridership differences due to adverse weather conditions.  相似文献   

2.
A model is developed for jointly optimizing the characteristics of a rail transit route and its associated feeder bus routes in an urban corridor. The corridor demand characteristics are specified with irregular discrete distributions which can realistically represent geographic variations. The total cost (supplier plus user cost) of the integrated bus and rail network is minimized with an efficient iterative method that successively substitutes variable values obtained through classical analytic optimization. The optimized variables include rail line length, rail station spacings, bus headways, bus stop spacings, and bus route spacing. Computer programs are designed for optimization and sensitivity analysis. The sensitivity of the transit service characteristics to various travel time and cost parameters is discussed. Numerical examples are presented for integrated transit systems in which the rail and bus schedules may be coordinated.  相似文献   

3.
Extensive work exists on regular rail network planning. However, few studies exist on the planning and design of ring-radial rail transit systems. With more ring transit lines being planned and built in Asia, Europe and the America's, a detailed study on ring transit lines is timely. An analytical model to find the optimal number of radial lines in a city for any demand distribution is first introduced. Secondly, passenger route choice for different rail networks is analyzed, for a many-to-many Origin-Destination (OD) demand distribution, based on a total travel time cost per passenger basis. The routes considered are: (1) radial lines only; (2) ring line only or radial lines and ring line combined; or (3) direct access to a destination without using the rail system. Mathematica and Matlab are used to code the route choice model. A cost-benefit optimization model to identify the feasibility and optimality of a ring line is proposed. Unlike simulations and agent-based models, this model is shown to be easily transferable to many ring-radial transit networks. The City of Calgary is used as an example to illustrate the applicability of each model. The existing urban rail network and trip distribution are major influencing factors in judging the feasibility and optimal location of the ring line. This study shows the potential net benefit of introducing a ring line by assessing changes in passengers’ costs. The changes in passenger cost parameters, such as ride cost and access cost, are shown to greatly influence the feasibility of a ring line.  相似文献   

4.
This paper considers the train scheduling problem for an urban rail transit network. We propose an event-driven model that involves three types of events, i.e., departure events, arrival events, and passenger arrival rates change events. The routing of the arriving passengers at transfer stations is also included in the train scheduling model. Moreover, the passenger transfer behavior (i.e., walking times and transfer times of passengers) is also taken into account in the model formulation. The resulting optimization problem is a real-valued nonlinear nonconvex problem. Nonlinear programming approaches (e.g., sequential quadratic programming) and evolutionary algorithms (e.g., genetic algorithms) can be used to solve this train scheduling problem. The effectiveness of the event-driven model is evaluated through a case study.  相似文献   

5.
Two on-board surveys were conducted to determine how transit riders perceive transfers. The surveys were conducted before and after the imposition of a transfer in the middle of an existing bus route. Results of the surveys showed that riders perceive bus transit trips as significantly worse when the trip requires a transfer, even if transfer time is neglibible.  相似文献   

6.
This paper presents two time series regression models, one in linear form and the other in logarithmic form, to estimate the monthly ridership of a single urban rail rapid transit line. The model was calibrated for a time period of about six and a half years (from 1978–1984) based on ridership data provided by a transit authority, gasoline prices provided by a state energy department, and other data.The major findings from these models are: (1) seasonal variations of ridership are –6.26%, or –6.20% for the summer period, and 4.77%, or 4.62% for the October period; (2) ridership loss due to a station closure is 2.46% or 2.41%; and (3) elasticities of monthly ridership are –0.233 or –0.245 with respect to real fare, 0.113 or 0.112 with respect to real gasoline price, and 0.167 or 0.185 with respect to real bridge tolls for the competing automobile trips. Such route specific application results of this inexpensive approach provide significant implications for policymaking of individual programs in pricing, train operation, budgeting, system changes, etc., as they are in the case reported herein and would be in many other cities.  相似文献   

7.
With the continuous expansion of urban rapid transit networks, disruptive incidents—such as station closures, train delays, and mechanical problems—have become more common, causing such problems as threats to passenger safety, delays in service, and so on. More importantly, these disruptions often have ripple effects that spread to other stations and lines. In order to provide better management and plan for emergencies, it has become important to identify such disruptions and evaluate their influence on travel times and delays. This paper proposes a novel approach to achieve these goals. It employs the tap-in and tap-out data on the distribution of passengers from smart cards collected by automated fare collection (AFC) facilities as well as past disruptions within networks. Three characteristic types of abnormal passenger flow are divided and analyzed, comprising (1) “missed” passengers who have left the system, (2) passengers who took detours, and (3) passengers who were delayed but continued their journeys. In addition, the suggested computing method, serving to estimate total delay times, was used to manage these disruptions. Finally, a real-world case study based on the Beijing metro network with the real tap-in and tap-out passenger data is presented.  相似文献   

8.
To improve the accessibility of transit system in urban areas, this paper presents a flexible feeder transit routing model that can serve irregular‐shaped networks. By integrating the cost efficiency of fixed‐route transit system and the flexibility of demand responsive transit system, the proposed model is capable of letting operating feeder busses temporarily deviate from their current route so as to serve the reported demand locations. With an objective of minimizing total bus travel time, a new operational mode is then proposed to allow busses to serve passengers on both street sides. In addition, when multiple feeder busses are operating in the target service area, the proposed model can provide an optimal plan to locate the nearest one to response to the demands. A three‐stage solution algorithm is also developed to yield meta‐optimal solutions to the problem in a reasonable amount of time by transforming the problem into a traveling salesman problem. Numerical studies have demonstrated the effectiveness of the proposed model as well as the heuristic solution approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, we focus on improving system-wide equity performance in an oversaturated urban rail transit network based on multi-commodity flow formulation. From the system perspective, an urban rail transit network is a distributed system, where a set of resources (i.e., train capacity) is shared by a number of users (i.e., passengers), and equitable individuals and groups should receive equal shares of resources. However, when oversaturation occurs in an urban rail transit network during peak hours, passengers waiting at different stations may receive varying shares of train capacity leading to the inequity problem under train all-stopping pattern. Train skip-stopping pattern is an effective operational approach, which holds back some passengers at stations and re-routes their journeys in the time dimension based on the available capacity of each train. In this study, the inequity problem in an oversaturated urban rail transit network is analyzed using a multi-commodity flow modeling framework. In detail, first, discretized states, corresponding to the number of missed trains for passengers, are constructed in a space-time-state three-dimensional network, so that the system-wide equity performance can be viewed as a distribution of all passengers in different states. Different from existing flow-based optimization models, we formulate individual passenger and train stopping pattern as commodity and network structure in the multi-commodity flow-modeling framework, respectively. Then, we aim to find an optimal commodity flow and well-designed network structure through the proposed multi-commodity flow model and simultaneously achieve the equitable distribution of all passengers and the optimal train skip-stopping pattern. To quickly solve the proposed model and find an optimal train skip-stopping pattern with preferable system-wide equity performance, the proposed linear programming model can be effectively decomposed to a least-cost sub-problem with positive arc costs for each individual passenger and a least-cost sub-problem with negative arc costs for each individual train under a Lagrangian relaxation framework. For application and implementation, the proposed train skip-stopping optimization model is applied to a simple case and a real-world case based on Batong Line in the Beijing Subway Network. The simple case demonstrates that our proposed Lagrangian relaxation framework can obtain the approximate optimal solution with a small-gap lower bound and a lot of computing time saved compared with CPLEX solver. The real-world case based on Batong Line in the Beijing Subway Network compares the equity and efficiency indices under the operational approach of train skip-stopping pattern with those under the train all-stopping pattern to state the advantage of the train skip-stopping operational approach.  相似文献   

10.
A major research study funded by the UK Overseas Development Administration (ODA) and designed to establish the necessary considerations for viability of mass rapid transit railways in developing cities was recently completed. The analytical core of the study was a pre-appraisal model, which combines an innovative strategic land use/transport model utilizing relationships from developing cities and an economic evaluation model. This model — MRTAP — has now been developed into a user-friendly package which the ODA intend should be made widely available in the developing world. The paper describes the basis of this model.  相似文献   

11.
A number of forces currently at work in the United States are fostering the rebirth of urban rail transportation. In order to maximize the beneficial economic and developmental impact of future rail investment, certain procedures and techniques must be employed in the planning, design, and implementation of rail systems. The paper offers a set of guidelines and principles for transportation and land use policy makers.  相似文献   

12.
Crime and fear of crime is a major problem plaguing U.S. transit systems, particularly those serving large urban areas. This paper presents a normative framework for assessing rail transit security following a system-wide metric approach. The security metric can also be used to assess the marginal improvement in security as a result of improving or adopting alternative policing and monitoring strategies. The model consists of five tasks: surveying rail transit security systems, developing a rail transit security metric, assigning efficiency ratings to rail security functions, developing a composite index for the efficiency of the overall security system, and applying a probability matrix to temper the results. Efficiency ratings can be translated into probability of occurrence figures that can be used in a decision tree context to improve rail transit security.  相似文献   

13.
A simplified simulation model for the operational analysis of a rail rapid transit train is presented. The model simulates the movement of a train along a route, and develops the relationships of time—distance, time—speed and distance—speed. The inputs to the model are the profile of speed limits and the dynamic characteristics of the train. Without the information on the track geometry and tractive effort, the model determines the speed of the train at a location based on the previous and future speed limits relative to the location. It was found that the model can fairly accurately simulate the relationship between travel time and distance. A comparison of the train travel times between the actual and simulated runs is presented. Because of the simplicity of input and calculation method, the model can be a useful tool for the “desk-top” analysis of frequently occurring planning problems of a commuter rail or rail rapid transit line, such as the impacts of changes in speed limits, station locations, station stopping policy, addition/elimination of stations, and types of rail cars.  相似文献   

14.
This paper defines a novel street Connectivity Indicator (C.I.) to predict transit performance by identifying the role that street network connectivity plays in influencing the service quality of demand responsive feeder transit services. This new C.I. definition is dependent upon the expected shortest path between any two nodes in the network, includes spatial features and transit demand distribution information and is easy to calculate for any given service area. Simulation analyses over a range of networks have been conducted to validate the new definition. Results show a desirable monotonic relationship between transit performance and the proposed C.I., whose values are directly proportional and therefore good predictors of the transit performance, outperforming other available indicators, typically used by planners.  相似文献   

15.
The interaction between rail transit and the urban property market is a vital foundation for planning transit-based policy such as Value Capture and Transit Oriented Development (TOD). Yet only few studies have reported the impact of transit access on commercial property value. This paper presents empirical evidence from Wuhan, China, to enrich the knowledge in the subject area. Spatial autoregressive models were employed to estimate the commercial value capture, based on 676 observations along Wuhan’s metro rail line through the main business districts. Value appreciation was discovered within the 400 m radius of road network distance from Metro stations. The transit access premiums present as two tiers: 16.7% for the 0–100 m core area and approximately 8.0% within the 100–400 m radius. The result demonstrates the potential benefit of adopting value capture and optimising TOD planning to support sustainable urban rail transit investment. Amid rapid urbanisation in China, the evidence reported here could help better inform cities, across the developing world and beyond, of the benefits of adopting rail transit-based policy.  相似文献   

16.
This paper provides a hierarchical customer satisfaction framework to measure rail transit lines’ performances in Istanbul. The problems related to rail transit line systems are addressed via customer satisfaction surveys. Then, a framework is proposed combining statistical analysis, fuzzy analytic hierarchy process, trapezoidal fuzzy sets and Choquet integral to evaluate customer satisfaction levels. Next, the criteria need to be improved are determined and specific recommendations to enhance the operation for specific lines are suggested. The proposed framework provides directions for the future investments and it also can be used at a more macroscopic level to determine the operational deficiencies. Furthermore, it can be generalized and applied to complex decision making problems that include uncertain and subjective data or vague information.  相似文献   

17.

New transit capital expenditures are typically evaluated in isolation from the transit/transport systems to which they belong. Problems with reporting performance elements such as ridership and costs are discussed. A focus on evaluating the total transport systems impact of new transit project implementation is called for. On this basis, new US rail transit systems have generally performed poorly. Total transit ridership has generally shown only minimal improvements and, at times, has declined. Financial performance has been disappointing in most cases, particularly when understood in the context of the additional system costs imposed through the reconfiguration of bus networks to serve the new rail systems. Low-cost approaches to improving basic transit services can often be more effective than either rail or bus capital-based projects. An obsession with technology leads to the wrong questions being asked. We should instead start inquiry with the study of needs.  相似文献   

18.
为实现轨道交通车站内客流快速疏散,避免因乘客滞留造成站内乘客出行效率低以及大客流压力导致的安全隐患等问题,本文对目前国内导向标识的设置原则及功能进行描述,依托大数据等信息化技术分析行人寻路行为机理及出行特征与导向标识序化设置间的关系,研究导向标识的序化设置,依据行人在不同交通设施的步行速度及信息处理时间,并提出在站内停顿点数量较多的通道、楼梯口及闸机处设置导向标识的位置,进而对导向标识的设置进行人性化和合理化的优化设置,对轨道车站内停顿点位置进行导向标识的合理布设,以快速引导行人进行出行决策,减少停顿点数量。  相似文献   

19.
The general lack of first/last mile connectivity is one of the main challenges faced by today’s public transit. One of the possible actions towards a solution to this problem is the planning, design and implementation of efficient feeder transit services. This paper develops an analytical model which allows for an easy computation of near optimal terminal-to-terminal cycle length of a demand responsive feeder service to maximize service quality provided to customers, defined as the inverse of a weighted sum of waiting and riding times. The model estimates the recommended cycle length by only plugging in geometrical parameters and demand data, without relying on extensive simulation analyses or rule of thumbs. Simulation experiments and comparisons with real services validate our model, which would allow planners, decision makers and practitioners to quickly identify the best feeder transit operating design of any given residential area.  相似文献   

20.
Efficiency of urban public transit: A meta analysis   总被引:2,自引:0,他引:2  
The aim of this paper is twofold. First, to provide a statistical overview of the literature on public transit efficiency performance. Second, to statistically explain the variation in efficiency findings reported in the literature. To this end, first some key concepts of efficiency analysis will be introduced, while next the different frontier methodologies that are used in the literature will be discussed. The empirical part of this paper consists of a statistical summary of the literature as well as meta-regression analyses for different samples of the literature in order to identify key determinants of technical efficiency (TE) of public transit operators. For a broad sample of observations, we found significant and consistent effects of the type of database, region and output measurement method. For the sample of non-parametric studies we found that the type of frontier assumptions also have an impact on the efficiency ratio. Further results show that there is no statistical difference in TE ratios between parametric and non-parametric studies. Finally, we found a positive univariate relationship between the number of inputs in the estimated specification and the efficiency ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号