共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a closed-form Latent Class Model (LCM) of joint mode and departure time choices. The proposed LCM offers compound substitution patterns between the two choices. The class-specific choice models are of two opposing nesting structures, each of which provides expected maximum utility feedback to the corresponding class membership model. Such feedback allows switching class membership in response to the changes in choice contexts. The model is used for an empirical investigation of commuting mode and departure time choices in the Greater Toronto and Hamilton Area (GTHA) by using a large sample household travel survey dataset. The empirical model reveals that overall 38% of the commuters in the GTHA are more likely to switch modes than departure times and 62% of them are more likely to do the reverse. The empirical model also reveals that the average Subjective Value of Travel Time Savings (SVTTS) of the commuters in the GTHA can be as low as 3 dollars if a single choice pattern of departure time choices nested within mode choices is considered. It can also be as high as 67 dollars if the opposite nesting structure is assumed. However, the LCM estimates the average SVTTS to be around 27 dollars in the GTHA. An empirical scenario analysis by using the estimated model indicates that a 50% increase in morning peak period car travel time does not sway more than 4% of commuters from the morning peak period. 相似文献
2.
Transportation planners and transit operators alike have become increasingly aware of the need to diffuse the concentration of peak period travel in an effort to improve gasoline economy and reduce peak load requirements. An evaluation of the potential effectiveness of strategies directed to achieve this end requires an understanding of factors which affect commuter trip timing decisions. The research discussed in this article addresses this particular problem through the development and estimation of a commuter departure time (to work) choice model.A number of conclusions were drawn based on the departure time model results and related analyses. It was found that work schedule flexibility, mode, occupation, income, age, and transportation level of service all influence departure time choice. The uncertainty in work arrival time and the consequences of various work arrival times may also be determinants of commuter departure time choice.The estimated model represents improvements over previous work in that it more explicitly considers work arrival time uncertainty and travelers' perceived loss associated with varying work arrival times, and additional socio-demographic factors which can potentially affect departure time choice. Furthermore, the estimated model includes consideration of transit commuters, in addition to single occupant auto and carpool work travelers. The inclusion of transit commuters represents a particularly important contribution for policy analysis, since the model could potentially be used to study the effect of service and employment policies on transit system peak load requirements. 相似文献
3.
This study performs a theoretical analysis of instability in a departure time choice problem. Stability of equilibrium is an important factor for reliability of travel time. If equilibrium is not stable, travel time changes over a period of days even if demand and network performance are stable. This study examines the stability of a dynamic user equilibrium problem by using the departure time choice problem. The mechanism of day‐to‐day changes in a traveller's behaviour is determined first, and then a function that indicates dissimilarity to equilibrium is defined. The day‐to‐day changes in the dissimilarity function are mathematically examined using approximations. A numerical test is also carried out to verify the result. Results of these analyses show that there can be a case where the system does not converge to equilibrium. It is also indicated that this instability should be caused by the non‐monotonicity of the schedule cost. 相似文献
4.
Intelligent transport systems provide various means to improve capacity and travel time in road networks. Evaluation of the benefits of these improvements requires consideration of travellers' response to them. We consider a continuous‐time equilibrium model of departure time choice and identify a formula for the dynamic equilibrium departure rate profile. We develop the analysis to consider the effect on the cost incurred by travellers of ITS measures through their effects on each of the travel time in the absence of congestion, and the capacity for travel. This shows the importance in choice of departure time of travellers' values of time at each of the origin and destination of their journeys. We show the importance of these values of time in evaluation, and that if travellers value their time at both the origin and destination of their journeys, their responses will lead them to achieve a greater reduction in costs than would be achieved under free‐flow conditions. 相似文献
5.
The objective of this paper is to investigate the impact of pre-trip information on auto commuters’ choice behavior. The analysis is based on an extensive home-interview survey of commuters in the Taichung metropolitan area in Taiwan. A joint model for route and departure time decisions with and without pre-trip information is formulated. The model specifications are developed for both the systematic and random components. In particular, econometric issues associated with specifying the random error structure are addressed for parameter estimation purposes. Insights into the effects of attributes are obtained through the analysis of the model's performance and estimated parameter values. A probit model form is used for the joint model, allowing the introduction of state dependence and correlation in the model specification. The results underscore the important relationship between the different characteristics and the propensity of commuter choice behavior under two scenarios, with and without pre-trip information. 相似文献
6.
The majority of origin destination (OD) matrix estimation methods focus on situations where weak or partial information, derived from sample travel surveys, is available. Information derived from travel census studies, in contrast, covers the entire population of a specific study area of interest. In such cases where reliable historical data exist, statistical methodology may serve as a flexible alternative to traditional travel demand models by incorporating estimation of trip-generation, trip-attraction and trip-distribution in one model. In this research, a statistical Bayesian approach on OD matrix estimation is presented, where modeling of OD flows derived from census data, is related only to a set of general explanatory variables. A Poisson and a negative binomial model are formulated in detail, while emphasis is placed on the hierarchical Poisson-gamma structure of the latter. Problems related to the absence of closed-form expressions are bypassed with the use of a Markov Chain Monte Carlo method known as the Metropolis-Hastings algorithm. The methodology is tested on a realistic application area concerning the Belgian region of Flanders on the level of municipalities. Model comparison indicates that negative binomial likelihood is a more suitable distributional assumption than Poisson likelihood, due to the great degree of overdispersion present in OD flows. Finally, several predictive goodness-of-fit tests on the negative binomial model suggest a good overall fit to the data. In general, Bayesian methodology reduces the overall uncertainty of the estimates by delivering posterior distributions for the parameters of scientific interest as well as predictive distributions for future OD flows. 相似文献
7.
The purpose of the current research effort is to develop a framework for a better understanding of commuter train users’ access mode and station choice behavior. Typically, access mode and station choice for commuter train users is modeled as a hierarchical choice with access mode being considered as the first choice in the sequence. The current study proposes a latent segmentation based approach to relax the hierarchy. In particular, this innovative approach simultaneously considers two segments of station and access mode choice behavior: Segment 1—station first and access mode second and Segment 2—access mode first and station second. The allocation to the two segments is achieved through a latent segmentation approach that determines the probability of assigning the individual to either of these segments as a function of socio-demographic variables, level of service (LOS) parameters, trip characteristics, land-use and built environment factors, and station characteristics. The proposed latent segment model is estimated using data from an on-board survey conducted by the Agence Métropolitaine de Transport for commuter train users in Montreal region. The model is employed to investigate the role of socio-demographic variables, LOS parameters, trip characteristics, land-use and built environment factors, and station characteristics on commuter train user behavior. The results indicate that as the distance from the station by active forms of transportation increases, individuals are more likely to select a station first. Young persons, females, car owners, and individuals leaving before 7:30 a.m. have an increased propensity to drive to the commuter train station. The station model indicates that travel time has a significant negative impact on station choice, whereas, presence of parking and increased train frequency encourages use of the stations. 相似文献
8.
Dynamic user optimal simultaneous route and departure time choice (DUO-SRDTC) problems are usually formulated as variational inequality (VI) problems whose solution algorithms generally require continuous and monotone route travel cost functions to guarantee convergence. However, the monotonicity of the route travel cost functions cannot be ensured even if the route travel time functions are monotone. In contrast to traditional formulations, this paper formulates a DUO-SRDTC problem (that can have fixed or elastic demand) as a system of nonlinear equations. The system of nonlinear equations is a function of generalized origin-destination (OD) travel costs rather than route flows and includes a dynamic user optimal (DUO) route choice subproblem with perfectly elastic demand and a quadratic programming (QP) subproblem under certain assumptions. This study also proposes a solution method based on the backtracking inexact Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, the extragradient algorithm, and the Frank-Wolfe algorithm. The BFGS method, the extragradient algorithm, and the Frank-Wolfe algorithm are used to solve the system of nonlinear equations, the DUO route choice subproblem, and the QP subproblem, respectively. The proposed formulation and solution method can avoid the requirement of monotonicity of the route travel cost functions to obtain a convergent solution and provide a new approach with which to solve DUO-SRDTC problems. Finally, numeric examples are used to demonstrate the performance of the proposed solution method. 相似文献
9.
This paper describes a disaggregate simultaneous destination and mode choice model for shopping trips. Following an introduction to the model structure and a review of the data, the results of five different model specifications are discussed. The models were estimated using data from two communities adjacent to Eindhoven, the Netherlands and utilise the multinomial logit model. 相似文献
10.
In this paper we formulate the dynamic user equilibrium problem with an embedded cell transmission model on a network with a single OD pair, multiple parallel paths, multiple user classes with elastic demand. The formulation is based on ideas from complementarity theory. The travel time is estimated based on two methods which have different transportation applications: (1) maximum travel time and (2) average travel time. These travel time functions result in linear and non-linear complementarity formulations respectively. Solution existence and the properties of the formulations are rigorously analyzed. Extensive computational experiments are conducted to demonstrate the benefits of the proposed formulations on various test networks. 相似文献
11.
This paper presents a joint trivariate discrete-continuous-continuous model for commuters’ mode choice, work start time and work duration. The model is designed to capture correlations among random components influencing these decisions. For empirical investigation, the model is estimated using a data set collected in the Greater Toronto Area (GTA) in 2001. Considering the fact that work duration involves medium- to long-term decision making compared to short-term activity scheduling decisions, work duration is considered endogenous to work start time decisions. The empirical model reveals many behavioral details of commuters’ mode choice, work start time and duration decisions. The primary objective of the model is to predict workers’ work schedules according to mode choice, which is considered a skeletal activity schedule in activity-based travel demand models. However, the empirical model reveals many behavioral details of workers’ mode choices and work scheduling. Independent application of the model for travel demand management policy evaluations is also promising, as it provides better value in terms of travel time estimates. 相似文献
12.
This paper presents a new tour-based mode choice model. The model is agent-based: both households and individuals are modelled within an object-oriented, microsimulation framework. The model is household-based in that inter-personal household constraints on vehicle usage are modelled, and the auto passenger mode is modelled as a joint decision between the driver and the passenger(s) to ride-share. Decisions are modelled using a random utility framework. Utility signals are used to communicate preferences among the agents and to make trade-offs among competing demands. Each person is assumed to choose the best combination of modes available to execute each tour, subject to auto availability constraints that are determined at the household level. The households allocations of resources (i.e., cars to drivers and drivers to ride-sharing passengers) are based on maximizing overall household utility, subject to current household resource levels. The model is activity-based: it is designed for integration within a household-based activity scheduling microsimulator. The model is both chain-based and trip-based. It is trip-based in that the ultimate output of the model is a chosen, feasible travel mode for each trip in the simulation. These trip modes are, however, determined through a chain-based analysis. A key organizing principle in the model is that if a car is to be used on a tour, it must be used for the entire chain, since the car must be returned home at the end of the tour. No such constraint, however, exists with respect to other modes such as walk and transit. The paper presents the full conceptual model and estimation results for an initial empirical prototype. Because of the complex nature of the model decision structure, choice probabilities are simulated from direct generation of random utilities rather than through an analytical probability expression. 相似文献
13.
Hurricanes are costly natural disasters periodically faced by households in coastal and to some extent, inland areas. A detailed understanding of evacuation behavior is fundamental to the development of efficient emergency plans. Once a household decides to evacuate, a key behavioral issue is the time at which individuals depart to reach their destination. An accurate estimation of evacuation departure time is useful to predict evacuation demand over time and develop effective evacuation strategies. In addition, the time it takes for evacuees to reach their preferred destinations is important. A holistic understanding of the factors that affect travel time is useful to emergency officials in controlling road traffic and helps in preventing adverse conditions like traffic jams. Past studies suggest that departure time and travel time can be related. Hence, an important question arises whether there is an interdependence between evacuation departure time and travel time? Does departing close to the landfall increases the possibility of traveling short distances? Are people more likely to depart early when destined to longer distances? In this study, we present a model to jointly estimate departure and travel times during hurricane evacuations. Empirical results underscore the importance of accommodating an inter-relationship among these dimensions of evacuation behavior. This paper also attempts to empirically investigate the influence of social ties of individuals on joint estimation of evacuation departure and travel times. Survey data from Hurricane Sandy is used for computing empirical results. Results indicate significant role of social networks in addition to other key factors on evacuation departure and travel times during hurricanes. 相似文献
14.
Over the past decades research on travel mode choice has evolved from work that is informed by utility theory, examining the effects of objective determinants, to studies incorporating more subjective variables such as habits and attitudes. Recently, the way people perceive their travel has been analyzed with transportation-oriented scales of subjective well-being, and particularly the satisfaction with travel scale. However, studies analyzing the link between travel mode choice (i.e., decision utility) and travel satisfaction (i.e., experienced utility) are limited. In this paper we will focus on the relation between mode choice and travel satisfaction for leisure trips (with travel-related attitudes and the built environment as explanatory variables) of study participants in urban and suburban neighborhoods in the city of Ghent, Belgium. It is shown that the built environment and travel-related attitudes—both important explanatory variables of travel mode choice—and mode choice itself affect travel satisfaction. Public transit users perceive their travel most negatively, while active travel results in the highest levels of travel satisfaction. Surprisingly, suburban dwellers perceive their travel more positively than urban dwellers, for all travel modes. 相似文献
15.
This paper presents a new paradigm for choice set generation in the context of route choice model estimation. We assume that the choice sets contain all paths connecting each origin–destination pair. Although this is behaviorally questionable, we make this assumption in order to avoid bias in the econometric model. These sets are in general impossible to generate explicitly. Therefore, we propose an importance sampling approach to generate subsets of paths suitable for model estimation. Using only a subset of alternatives requires the path utilities to be corrected according to the sampling protocol in order to obtain unbiased parameter estimates. We derive such a sampling correction for the proposed algorithm.Estimating models based on samples of alternatives is straightforward for some types of models, in particular the multinomial logit (MNL) model. In order to apply MNL for route choice, the utilities should also be corrected to account for the correlation using, for instance, a path size (PS) formulation. We argue that the PS attribute should be computed based on the full choice set. Again, this is not feasible in general, and we propose a new version of the PS attribute derived from the sampling protocol, called Expanded PS.Numerical results based on synthetic data show that models including a sampling correction are remarkably better than the ones that do not. Moreover, the Expanded PS shows good results and outperforms models with the original PS formulation. 相似文献
16.
Knowledge on human behaviour in emergency is crucial to increase the safety of buildings and transportation systems. Decision making during evacuations implies different choices, of which one of the most important concerns is the escape route. The choice of a route may involve local decisions on alternative exits from an enclosed environment. This study investigates the effect of environmental (presence of smoke, emergency lighting and distance of exit) and social factors (interaction with evacuees close to the exits and with those near the decision-maker) on local exit choice. This goal is pursued using an online stated preference survey carried out making use of non-immersive virtual reality. A sample of 1503 participants is obtained and a mixed logit model is calibrated using these data. The model shows that the presence of smoke, emergency lighting, distance of exit, number of evacuees near the exits and the decision-maker and flow of evacuees through the exits significantly affect local exit choice. Moreover, the model indicates that decision making is affected by a high degree of behavioural uncertainty. Our findings support the improvement of evacuation models and the accuracy of their results, which can assist in designing and managing building and transportation systems. The main aim of this study is to enrich the understanding of how local exit choices are made and how behavioural uncertainty affects these choices. 相似文献
17.
A substantial amount of research is presently being carried out to understand the complexities involved in modelling the choice of departure time and mode of travel. Many of these models tend to be far too complex and far too data intensive to be of use for application in large scale model forecasting systems, where socio-economic detail is limited and detailed scheduling information is rarely available in the model implementation structure. Therefore, these models generally work on the basis of a set of mutually exclusive time periods, rather than making use of continuous departure time information. Two important questions need to be addressed in the use of such models, namely the specification used for the time periods (in terms of length), and the ordering of the levels of nesting, representing the difference in the sensitivities to shifts in departure time and changes in the mode of travel. This paper aims to provide some answers to these two questions on the basis of an extensive analysis making use of three separate Stated Preference (SP) datasets, collected in the United Kingdom and in the Netherlands. In the analysis, it has proved possible to develop models which allow reasonably sound predictions to be made of these choices. With a few exceptions, the results show higher substitution between alternative time periods than between alternative modes. Furthermore, the results show that the degree of substitution between time periods is reduced when making use of a more coarse specification of the time periods. These results are intended for use by practitioners, and form an important part of the evidence base supporting the UK Department for Transport’s advice for practical UK studies in the WebTAG system. 1 相似文献
18.
The primary purpose of this study was to investigate how relative associations between travel time, costs, and land use patterns
where people live and work impact modal choice and trip chaining patterns in the Central Puget Sound (Seattle) region. By
using a tour-based modeling framework and highly detailed land use and travel data, this study attempts to add detail on the
specific land use changes necessary to address different types of travel, and to develop a comparative framework by which
the relative impact of travel time and urban form changes can be assessed. A discrete choice modeling framework adjusted for
demographic factors and assessed the relative effect of travel time, costs, and urban form on mode choice and trip chaining
characteristics for the three tour types. The tour based modeling approach increased the ability to understand the relative
contribution of urban form, time, and costs in explaining mode choice and tour complexity for home and work related travel.
Urban form at residential and employment locations, and travel time and cost were significant predictors of travel choice.
Travel time was the strongest predictor of mode choice while urban form the strongest predictor of the number of stops within
a tour. Results show that reductions in highway travel time are associated with less transit use and walking. Land use patterns
where respondents work predicted mode choice for mid day and journey to work travel.
Lawrence Frank
is an Associate Professor and Bombardier Chair in Sustainable Transportation at the University of British Columbia and a
Senior Non-Resident Fellow of the Brookings Institution and Principal of Lawrence Frank and Company. He has a PhD in Urban
Design and Planning from the University of Washington.
Mark Bradley
is Principal, Mark Bradley Research & Consulting, Santa Barbara California. He has a Master of Science in Systems Simulation
and Policy Design from the Dartmouth School of Engineering and designs forecasting and simulation models for assessment of
market-based policies and strategies.
Sarah Kavage
is a Senior Transportation Planner and Special Projects Manager at Lawrence Frank and Company. She has a Masters in Urban
Design and Planning from the University of Washington and is a writer and an artist based in Seattle.
James Chapman
is a Principal Transportation Planner and Analyst at Lawrence Frank and Company in Atlanta Georgia. He has a Masters in Engineering
from the Georgia Institute of Technology.
T. Keith Lawton
transport modeling consultant and past Director of Technical services, Metro Planning Department, Portland, OR, has been active
in model development for over 40 years. He has a BSc. in Civil Engineering from the University of Natal (South Africa), and
an M.S. in Civil and Environmental Engineering from Duke University. He is a member and past Chair of the TRB Committee on
Passenger Travel Demand Forecasting. 相似文献
19.
Transportation - This paper develops an error component mixed logit model to analyze the multi-dimensional residential, work and transportation mode choice. It expanse previous studies based on... 相似文献
20.
Transportation - An increasing number of papers are focusing on integrating psychological aspects into the typical discrete choice models. The majority of these studies account for several latent... 相似文献
|