首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the vulnerability of congested road networks, the commonly used full network scan approach is to evaluate all possible scenarios of link closure using a form of traffic assignment. This approach can be computationally burdensome and may not be viable for identifying the most critical links in large-scale networks. In this study, an “impact area” vulnerability analysis approach is proposed to evaluate the consequences of a link closure within its impact area instead of the whole network. The proposed approach can significantly reduce the search space for determining the most critical links in large-scale networks. In addition, a new vulnerability index is introduced to examine properly the consequences of a link closure. The effects of demand uncertainty and heterogeneous travellers’ risk-taking behaviour are explicitly considered. Numerical results for two different road networks show that in practice the proposed approach is more efficient than traditional full scan approach for identifying the same set of critical links. Numerical results also demonstrate that both stochastic demand and travellers’ risk-taking behaviour have significant impacts on network vulnerability analysis, especially under high network congestion and large demand variations. Ignoring their impacts can underestimate the consequences of link closures and misidentify the most critical links.  相似文献   

2.
Traditionally, an assessment of transport network vulnerability is a computationally intensive operation. This article proposes a sensitivity analysis-based approach to improve computational efficiency and allow for large-scale applications of road network vulnerability analysis. Various vulnerability measures can be used with the proposed method. For illustrative purposes, this article adopts the relative accessibility index (AI), which follows the Hansen integral index, as the network vulnerability measure for evaluating the socio-economic effects of link (or road segment) capacity degradation or closure. Critical links are ranked according to the differences in the AIs between normal and degraded networks. The proposed method only requires a single computation of the network equilibrium problem. The proposed technique significantly reduces computational burden and memory storage requirements compared with the traditional approach. The road networks of the Sioux Falls city and the Bangkok metropolitan area are used to demonstrate the applicability and efficiency of the proposed method. Network manager(s) or transport planner(s) can use this approach as a decision support tool for identifying critical links in road networks. By improving these critical links or constructing new bypass roads (or parallel paths) to increase capacity redundancy, the overall vulnerability of the networks can be reduced.  相似文献   

3.
Network risk assessment takes into consideration the probability that adverse events occur and the impacts of such disruptions on network functionality. In the context of transport networks, most studies have focused on vulnerability, the reduction in performance indicators given that a disruption occurs. This study presents and applies a method to explicitly account for exposure in identifying and evaluating link criticality in public transport networks. The proposed method is compared with conventional measures that lack exposure information. A criticality assessment is performed by accounting for the probability of a certain event occurring and the corresponding welfare loss. The methodology was applied for a multi-modal public transport network in the Netherlands where data concerning disruptions was available. The results expose the role of exposure in determining link criticality and overall network vulnerability. The findings demonstrate that disregarding exposure risks prioritizing links with high passenger volumes over links with a higher failure probability that are significantly more critical to network performance. The inclusion of exposure allows performing a risk analysis and has consequences on assessing mitigation measures and investment priorities.  相似文献   

4.

In the transportation literature, two major and parallel approaches exist to identify the critical elements of a transportation system. On the one hand, conventional transportation engineering emphasizes travel demand, often in terms of traffic volume (i.e., demand side). On the other hand, newer techniques from Network Science emphasize network topology (i.e., supply side). To better understand the relationship between the two approaches, we first investigate whether they correlate by comparing traffic volume and node centrality. Second, we assess the impact of the two approaches on the connectivity and resilience of a transportation network; connectivity is measured by the relative size of the giant component, and resilience is measured by the network’s adaptive capacity (the amount of extra flow it can handle). The urban road system of Isfahan (Iran) is used as a practical case study. Overall, we find that traffic volume indeed correlates with node centrality. In addition, we find that the weighted degree of a node, i.e., the sum of the capacities of its incident links (for small disruptions) and node betweenness (for large disruptions), best captures node criticality. Nodes with high weighted degree and betweenness should therefore be given higher priority to enhance connectivity and resilience in urban street systems. Regarding link criticality, roads with higher capacities showed a more important role as opposed to betweenness, flow, and congestion.

  相似文献   

5.
We present an approach to systematically analysing the vulnerability of road networks under disruptions covering extended areas. Since various kinds of events including floods, heavy snowfall, storms and wildfires can cause such spatially spread degradations, the analysis method is an important complement to the existing studies of single link failures. The methodology involves covering the study area with grids of uniformly shaped and sized cells, where each cell represents the extent of an event disrupting any intersecting links. We apply the approach to the Swedish road network using travel demand and network data from the Swedish national transport modelling system Sampers. The study shows that the impacts of area-covering disruptions are largely determined by the level of internal, outbound and inbound travel demand of the affected area itself. This is unlike single link failures, where the link flow and the redundancy in the surrounding network determine the impacts. As a result, the vulnerability to spatially spread events shows a markedly different geographical distribution. These findings, which should be universal for most road networks of similar scale, are important in the planning process of resource allocation for mitigation and recovery.  相似文献   

6.
The stability of road networks has become an increasingly important issue in recent times, since the value of time has increased considerably and unexpected delay can results in substantial loss to road users. Road network reliability has now become an important performance measure for evaluating road networks, especially when considering changes in OD traffic demand and link flow capacity over time. This paper outlines the basic concepts, remaining problems and future directions of road network reliability analysis. There are two common definitions of road network reliability, namely, connectivity reliability and travel time reliability. As well, reliability analysis is generally undertaken in both normal and abnormal situations. In order to analyse the reliability of a road network, the reliability of the links within the network must be first determined. A method for estimating the reliability of links within road networks is also suggested in this paper.  相似文献   

7.
This article investigates two performance attributes of road networks, reliability and vulnerability, analyzing their similarities as well as the differences that justify distinct definitions, based on consolidation of recent studies. We also discuss the indicators found in the literature for these two performance attributes. Since various authors treat vulnerability as an aspect of reliability instead of a specific attribute, we carried out an application to a complex road network representative of the city of Rio de Janeiro to check the suitability of this approach. The results show that the vulnerability indicators are more strongly affected by the characteristics of alternative routes while the reliability metrics are more sensitive to the congestion level. The conclusion is that reliability and vulnerability should be treated distinctly for evaluating the performance of road network links.  相似文献   

8.
The reliability and vulnerability of critical infrastructures have attracted a lot of attention recently. In order to assess these issues quantitatively, operational measures are needed. Such measures can also be used as guidance to road administrations in their prioritisation of maintenance and repair of roads, as well as for avoiding causing unnecessary disturbances in the planning of roadwork. The concepts of link importance and site exposure are introduced. In this paper, several link importance indices and site exposure indices are derived, based on the increase in generalised travel cost when links are closed. These measures are divided into two groups: one reflecting an “equal opportunities perspective”, and the other a “social efficiency perspective”. The measures are calculated for the road network of northern Sweden. Results are collected in a GIS for visualisation, and are presented per link and municipality. In view of the recent great interest in complex networks, some topological measures of the road network are also presented.  相似文献   

9.
This paper considers the development of a method for network vulnerability analysis which considers the socio-economic impacts of network degradation and seeks to determine the most critical locations in the network. The method compares the levels of remoteness (or its inverse, accessibility) of localities within the study region, on the basis of the impacts of degradation of the road network on a recognised accessibility/remoteness index that can be applied to each and every location within the region. It thus extends the earlier work on accessibility-based vulnerability analysis which was limited to assessment of impacts on selected nodes in a network. The new method allows study of impacts on both specified locations (which do not have to be represented as network nodes) and the region as a whole. The accessibility/remoteness index is defined so that an accessibility surface can be calculated for the region, and the volume under this surface provides an overall measure of accessibility. Changes in the volume under different network states thus reflect the overall impacts. The method is applied to a rural region in south east Australia.  相似文献   

10.
This study proposes a framework to explore the concepts of exposure, vulnerability and connectivity in EU road network and to assess the potential transportation infrastructure sensitivities towards Sea-Level Rise (SLR) and storm surges. The magnitude and significance of impacts were determined and knowledge of network robustness was built up based on existing climate data and on future trends. Various spatial databases were integrated and a four-stage transport model was used to explore the likely impacts of network degradation. The pattern of the network was assessed via both node- and link-based measurements, where different road databases, namely TRANS-TOOLS and Tele Atlas/TomTom, were employed in order to analyze the impact of spatial resolution within network connectivity analyses. This general framework developed for European Union, was tested on a specific and articulated case study area; namely, the north-east coastal region of Spain. The research conducted, yielded useful methods for the analysis of network vulnerability, where impacts are more significant in regional accessibility patterns. Accessibility indicators at the regional level changed drastically, with some regions showing up to a 26% decrease. According to the results of network connectivity indicators, the changes in network topology have reduced the number of alternative routes and placed more pressure on the transport system. The implementation of this framework and quantitative assessment methodologies outlined in this paper could be employed to assist policy makers to recognize the opportunities that may arise or diminish the adverse effects.  相似文献   

11.
Ye  Qian  Kim  Hyun 《Transportation》2019,46(5):1591-1614

Much of the literature in recent years has examined the vulnerability of transportation networks. To identify appropriate and operational measures of nodal centrality using connectivity in the case of heavy rail systems, this paper presents a set of comprehensive measures in the form of a Degree of Nodal Connection (DNC) index. The DNC index facilitates a reevaluation of nodal criticality among distinct types of transfer stations in heavy rail networks that present a number of multiple lines between stations. Specifically, a new classification of transfer stations—mandatory transfer, non-mandatory transfer, and end transfer—and a new measure for linkages—link degree and total link degree—introduces the characteristics of heavy rail networks when we accurately expose the vulnerability of a node. The concept of partial node failure is also introduced and compare the results of complete node failure scenarios. Four local and global indicators of network vulnerability are derived from the DNC index to assess the vulnerability of major heavy rail networks in the United States. Results indicate that the proposed DNC indexes can inform decision makers or network planners as they explore and compare the resilience of multi-hubs and multi-line networks in a comprehensive but accurate manner regardless of their network sizes.

  相似文献   

12.
This study develops and applies a multimodal computable general equilibrium (CGE) framework to investigate the role of resilience in the economic consequences of transportation system failures. Vulnerability and economic resilience of different modes of transportation infrastructure, including air, road, rail, water and local transit, are assessed using a CGE model that incorporates various resilience tactics including modal substitution, trip conservation, excess capacity, relocation/rerouting, and service recapture. The linkages between accessibility, vulnerability, and resilience are analyzed. The model is applied to the transportation system failures in the aftermath of Hurricane Katrina to illustrate its capabilities. The analytical framework, however, has broader applications and can provide insights for resource allocations to enhance emergent responses to unexpected events and to improve resilient design of transportation infrastructure systems.  相似文献   

13.
The transport system is critical to the welfare of modern societies. This article provides an overview of recent research on vulnerability and resilience of transport systems. Definitions of vulnerability and resilience are formulated and discussed together with related concepts. In the increasing and extensive literature of transport vulnerability studies, two distinct traditions are identified. One tradition with roots in graph theory studies the vulnerability of transport networks based on their topological properties. The other tradition also represents the demand and supply side of the transport systems to allow for a more complete assessment of the consequences of disruptions or disasters for the users and society. The merits and drawbacks of the approaches are discussed. The concept of resilience offers a broader socio-technical perspective on the transport system’s capacity to maintain or quickly recover its function after a disruption or a disaster. The transport resilience literature is less abundant, especially concerning the post-disaster phases of response and recovery. The research on transport system vulnerability and resilience is now a mature field with a developed methodology and a large amount of research findings with large potential practical usefulness. The authors argue that more cross-disciplinary collaborations between authorities, operators and researchers would be desirable to transform this knowledge into practical strategies to strengthen the resilience of the transport system.  相似文献   

14.
It is computationally expensive to find out where vulnerable parts in a network are. In literature a variety of methods were introduced that use simple indicators (measured in real-life or calculated in a traffic simulator) to pre-determine the seriousness of the delays caused by the blocking of that link and thereafter perform a more detailed analysis. This article reviews the indicators proposed in the literature and assesses the quality of these indicators. Furthermore, a multi-linear fit of the indicators is made to find a better, combined, indicator to rank the links according to their vulnerability. The article shows that different indicators assess different links to be vulnerable. Also combined they cannot predict the vulnerability of a link. Therefore, it is concluded that to find vulnerable links, one has to look further than link-based indicators.  相似文献   

15.
As one of the devastating natural disasters, landslide may induce significant losses of properties and lives area-wide, and generate dramatic damages to transportation network infrastructure. Accessing the impacts of landslide-induced disruptions to roadway infrastructure can be extremely difficult due to the complexity of involved impact factors and uncertainties of vulnerability related events. In this study, a data-driven approach is developed to assess landslide-induced transportation roadway network vulnerability and accessibility. The vulnerability analysis is conducted by integrating a series of static and dynamic factors to reflect the landslide likelihood and the consequences of network accessibility disruptions. The analytical hierarchy process (AHP) model was developed to assess and map the landslide likelihood. A generic vulnerability index (VI) was calculated for each roadway link in the network to identify critical links. Spatial distributions of landslide likelihood, consequences of network disruptions, and network vulnerability degrees were fused and analyzed. The roadway network on Oahu Island in Hawaii is utilized to demonstrate the effectiveness of the proposed approach with all the geo-coded information for its network vulnerability analysis induced by area-wide landslides. Specifically, the study area was classified into five categories of landslide likelihood: very high, high, moderate, low, and stable. About 34% of the study area was assigned as the high or very high categories. The results of network vulnerability analyses highlighted the importance of three highway segments tunnel through the Ko‘olau Range from leeward to windward, connecting Honolulu to the windward coast including the Pali highway segment, Likelike highway segment, and Interstate H-3 highway segment. The proposed network vulnerability analysis method provides a new perspective to examine the vulnerability and accessibility of the roadway network impacted by landslides.  相似文献   

16.
Abstract

The purpose of this study was to investigate the impact of the five strikes on the London Underground (metro) rail system, which occurred in 2009 and 2010, on macroscopic and road link travel times. A consequence of these strikes was an increase in road traffic flows above usual levels. This provides an opportunity to observe the operation of the road network under unusually high flows. The first objective involves the examination of strike effects on inbound (IT) and outbound traffic (OT) within central, inner and outer London. Travel time data obtained from automatic number plate recognition cameras are used within the first part of the analysis. The second more detailed objective was to investigate in spatio-temporal effects on travel times on five road links. Correlation analyses and general linear models are developed using both traffic flow and travel time data. According to the results of the study, the morning IT had approximately twice as much delay as the OT. Central London experienced the highest delays, followed by inner and outer London. As would be expected, the unique full-day strike in 2009 yielded the worst impact on the network with the highest percentage increase in total travel time (60%) occurring during the morning peak in the IT in inner London. The results from the link-level analysis showed statistical significance amongst the examined links indicating heterogeneous effects from one link to another. It was also found that travel time changes may be more effectively captured through time-of-day terms compared to hourly traffic flows.  相似文献   

17.
Freight transportation by railroads is an integral part of the U.S. economy. Identifying critical rail infrastructures can help stakeholders prioritize protection initiatives or add necessary redundancy to maximize rail network resiliency. The criticality of an infrastructure element, link or yard, is based on the increased cost (delay) incurred when that element is disrupted. An event of disruption can cause heavy congestion so that the capacity at links and yards should be considered when freight is re-routed. This paper proposes an optimization model for making-up and routing of trains in a disruptive situation to minimize the system-wide total cost, including classification time at yards and travel time along links. Train design optimization seeks to determine the optimal number of trains, their routes, and associated blocks, subject to various capacity and operational constraints at rail links and yards. An iterative heuristic algorithm is proposed to attack the computational burden for real-world networks. The solution algorithm considers the impact of volume on travel time in a congested or near-congested network. The proposed heuristics provide quality solutions with high speed, demonstrated by numerical experiments for small instances. A case study is conducted for the network of a major U.S. Class-I railroad based on publicly available data. The paper provides maps showing the criticality of infrastructure in the study area from the viewpoint of strategic planning.  相似文献   

18.
Abstract

Road network planning (or design) problems consist of determining the best investment decisions to be made with regard to the improvement of a road network. In this paper, we propose an optimization model for long-term interurban road network planning where accessibility and robustness objectives are simultaneously taken into account. Three network robustness measures were defined to assess different robustness concerns: network spare capacity; city evacuation capacity; and network vulnerability. The results that may be obtained from the application of the model are illustrated for three random networks. Special attention is given to the implications of adopting each one of the robustness measures upon the optimum solution provided by the model.  相似文献   

19.
Robust public transport networks are important, since disruptions decrease the public transport accessibility of areas. Despite this importance, the full passenger impacts of public transport network vulnerability have not yet been considered in science and practice. We have developed a methodology to identify the most vulnerable links in the total, multi-level public transport network and to quantify the societal costs of link vulnerability for these identified links. Contrary to traditional single-level network approaches, we consider the integrated, total multi-level PT network in the identification and quantification of link vulnerability, including PT services on other network levels which remain available once a disturbance occurs. We also incorporate both exposure to large, non-recurrent disturbances and the impacts of these disturbances explicitly when identifying and quantifying link vulnerability. This results in complete and realistic insights into the negative accessibility impacts of disturbances. Our methodology is applied to a case study in the Netherlands, using a dataset containing 2.5 years of disturbance information. Our results show that especially crowded links of the light rail/metro network are vulnerable, due to the combination of relatively high disruption exposure and relatively high passenger flows. The proposed methodology allows quantification of robustness benefits of measures, in addition to the costs of these measures. Showing the value of robustness, our work can support and rationalize the decision-making process of public transport operators and authorities regarding the implementation of robustness measures.  相似文献   

20.
This paper presents a heuristic method for designing a PRT network. Because the PRT system operating characteristics and performance measures differ widely from those of conventional transit technologies, an algorithm for the PRT network design problem (NDP) is derived by using concepts from some current NDP algorithms. We minimize the sum of passenger travel time cost, construction cost, vehicle cost and operational costs, subject to an available budget of guideway, a maximum number of vehicles and given link capacities. Starting with a well-connected initial network, the algorithm eliminates and adds links iteratively as it searches for a near-optimal solution. If this solution satisfies the budget constraint, it is considered to be acceptable. Otherwise, additional links are deleted until a feasible near-optimal solution is obtained. The link elimination phase of the algorithm only considers half of the links at a time which greatly decreases computing time. None of the links in an acceptable solution will be overloaded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号