共查询到19条相似文献,搜索用时 62 毫秒
1.
运用有限元子模型法,分析轮载作用下正交异性钢桥面铺装的受力状态,比较了桥面板厚度、加劲肋厚度等不同结构参数对铺装层受力状态的影响,对正交异性钢桥面结构进行了优化分析,分析结果表明桥面板厚度对桥面铺装的受力状态影响较显著,其影响比加劲肋厚度对铺装的受力状态影响更显著,提出了钢桥面板的优化组合设计模式. 相似文献
2.
3.
4.
5.
6.
7.
8.
9.
正交异性钢桥面新型复合铺装结构研究 总被引:1,自引:1,他引:1
针对正交异性钢桥面存在的主要破坏形式,提出其铺装层相应的4个主要设计指标:铺装层表面拉应力、铺装层与钢桥面板层间剪应力、铺装层垂直压应变和铺装层剪应力。利用有限元方法,以铺装层与含加劲肋和纵横隔板的正交异性钢桥面局部梁段作为计算对象,进行有限元分析,分析各个设计指标随铺装过渡层模量和铺装层厚度的变化规律。首次提出以水泥基材料为过渡层、焊钉为剪力连接件和SMA13为表层的新型复合铺装系统,并进行了热相容试验、高温复合车辙试验和复合梁疲劳试验等一系列小型试件试验研究。研究结果表明,增大铺装过渡层模量或适当增加铺装层厚度,有助于降低正交异性钢桥面板的应力和应变,使铺装层总体受力越有利;与传统双层沥青混凝土铺装结构相比,新型复合铺装系统性能更优越。 相似文献
10.
正交异性钢桥面板第一体系受力状态对铺装层的影响 总被引:2,自引:0,他引:2
针对不同桥型主梁上正交异性钢桥面铺装层破坏的差异,采用预应力模拟正交异性钢桥面板的第一体系应力,用有限元方法计算作用有不同预应力水平的局部正交异性钢桥面系在标准轴载作用下的力学响应。得到了局部桥面系铺装层的各控制指标值分别随预应力水平的变化关系。结果表明,第一体系纵向正应力对铺装层表面最大纵向拉应变影响显著,第一体系横向正应力对铺装层表面最大横向拉应变影响较大,而第一体系应力状态对最大肋间相对挠度的影响很小、对层间最大剪应力基本没影响。 相似文献
11.
12.
针对武汉白沙洲大桥钢箱梁桥面铺装的破坏情况,分析了铺装层病害的原因,采用新型防水粘结材料和界面粗糙化处理技术对铺装层破坏部位进行实施了抗滑移修复方案,应用有限元法分析了车轮荷载作用下的正交异性钢桥面铺装层剪应力的变化规律,同时对防水粘结层材料的粘结强度、抗剪强度和弯曲变形性能进行室内试验,并且成功实施了白沙洲大桥钢桥面修复工程试验段。研究结果可以为白沙洲大桥的全面改造提供参考。 相似文献
13.
为保证数值分析的准确,以铺装层与钢板间的最大纵向剪应力和铺装层表面的横向最大拉应变为指标,对数值模型的横向尺寸、纵向尺寸、横隔板底约束以及单元大小等参数进行分析,得到优化模型.同时,以上海市桃浦路蕴藻浜桥工程为实桥研究对象,利用光纤光栅传感器对实桥铺装层的表面横向应变、纵向应变以及铺装层间横向应变、纵向应变进行静栽测试,并与计算值对照验证.研究结果表明:模型的横向尺寸取7个U肋的距离为最优尺寸;纵向取3跨时已可以保证计算精度,简支约束更能符合桥面整体约束状态;横隔板底部的约束应采用全固定约束.采用优化模型分析得到的计算值与实桥加载得出的实测值变化趋势基本一致,仅个别工况点位存在差异. 相似文献
14.
某桥主梁采用正交异性钢桥面板结构,为研究在轮载作用下,该桥正交异性钢桥面板受力和抗疲劳性能是否满足要求,建立该桥正交异性钢桥面板局部模型,计算轮载作用下其挠度、曲率半径和应力,并结合规范估算构造细节的疲劳强度。结果表明,在轮载作用下,桥面板主要变形区域较小,最大肋间相对挠度为0.28mm,满足限值要求,但最小曲率半径不满足规范规定;在纵向U肋、横隔板与桥面板连接处局部出现较明显的应力集中现象,且横向正应力普遍大于纵向正应力,但应力未超过限值;疲劳寿命最小的连接细节为纵肋与横梁的连接部位和横梁腹板开孔部位,应力幅值分别达77.4 MPa和127.9MPa,疲劳寿命分别为1.8×106和3.4×105次,远小于规范要求;该桥需要通过改变构造以及设计合理的桥面铺装来改善结构受力情况。 相似文献
15.
正交异性钢桥面板在钢桥尤其是大跨度钢桥设计中广泛使用。该文通过分析总结正交异性钢桥面板的计算方法,为设计人员在设计工作中提供参考。对比整体计算法和叠加计算法的优缺点,并通过工程实例,采用格子梁法详细分析了正交异性钢桥面板的计算过程,同时阐述了计算过程中的注意事项,指出整体计算法、P-E法和格子梁法三种计算方法中格子梁法更加高效,整体计算法最为准确。 相似文献
16.
为了揭示钢桥梁桥面沥青混凝土铺装的实际受力特性,利用有限元方法对大跨径正交异性钢桥面铺装层的瞬态动力学响应进行了分析和计算。在不同层间接触条件时,对铺装层静力和动力响应计算结果分析的基础上,着重对完全光滑条件下不同加载周期、不同铺装层模量以及不同铺装层厚度等对铺装层动力响应的影响进行了探讨。结果表明,完全光滑和完全连续接触条件下铺装层的动力响应截然不同,完全光滑时铺装层的最大拉应力为完全连续时的近10倍;加载周期及铺装层模量对铺装层的动力响应影响不显著;铺装层厚度对铺装层动力响应影响较大,当铺装层与钢桥面板之间完全滑动时,6 cm左右的铺装层厚度是最不利的。与静力学计算结果相比,动力计算结果更加接近实际情况。 相似文献
17.
本文选取U肋与桥面板连接区域、U肋与横隔板交叉部位、U肋等细节,通过实桥静力试验,结合有限元模型分析,研究正交异性钢桥面板局部应力的大小和分布规律.结果表明:钢桥面板各关键构造细节的应力影响线都比较短,纵向应力主要受两个横隔板间距的影响,横向应力受与其相邻的两个U肋间距内荷载的影响;当车辆通过时,测点会出现多个应力循环;在U肋-横隔板连接焊缝附近,U肋腹板上的应力水平较高;横隔板弧形切口自由边缘两侧应力性质相反,一侧受压、一侧受拉,应力幅值较大,存在疲劳开裂隐患;因此设计中应该对构造细节进行详细研究分析,并注意焊接区域的细部设计与制造,避免疲劳开裂. 相似文献
18.
目前国内大多数钢箱梁结构的柔性铺装在使用过程中均出现了铺装层开裂、脱粘、车辙、坑槽等病害,且正交异性钢桥面出现了包括纵肋-面板连接处疲劳开裂、纵肋-横隔板连接处疲劳开裂、横隔板弧形切口处疲劳开裂、纵肋拼接焊缝处疲劳开裂等病害.为避免这些病害情况的产生,采用了钢-超高韧性混凝土(STC)轻型组合桥面铺装型式. 相似文献
19.
某跨江大桥为主跨460m的斜拉桥,运营多年后正交异性板钢箱梁出现大量裂纹,提出采用超高性能混凝土(UHPC)组合桥面(由配钢筋网的UHPC层与钢桥面板通过短栓钉组合而成)进行改造。为选择合适的改造方案,采用有限元法建立原钢箱梁和UHPC组合桥面钢箱梁(UHPC层厚4.5,5.5,6.0cm)模型,分析各疲劳细节应力及UHPC层应力;开展UHPC层配置钢板条的组合结构模型试验,验证其疲劳性能。结果表明:UHPC组合桥面降低了钢箱梁各疲劳细节最大应力幅,降幅为11%~88%,顶板疲劳细节处裂纹尖端最大应力幅降幅达92%;疲劳荷载作用下,UHPC层顶面应力较低,钢桥面板开裂后UHPC层底面应力较大;采用钢板条对5.5cm厚UHPC层的组合结构加强后,UHPC层名义开裂应力达43.2MPa,200万次疲劳寿命达22.1MPa,疲劳性能满足要求,选择该方案进行改造。 相似文献