首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
高速动车组车轮踏面镟修策略研究   总被引:3,自引:0,他引:3  
车轮踏面镟修策略主要包括车轮镟修周期的制定和镟修用车轮踏面外形的制定。通过对高速动车组振动性能和车轮磨耗状态的长期跟踪测试,确定高速动车组车轮镟修策略的制定原则和评价方法。在此基础上,结合京津城际铁路CRH3C型动车组典型振动性能、车轮外形和磨耗状态的实测数据,研究高速动车组的车轮镟修周期;对比分析国外镟修用车轮踏面外形制定方法,设计出18种高速动车组镟修用车轮踏面外形,并对现场最为需要的28,29和30mm这3种薄轮缘外形的车轮进行轮轨接触几何关系和动力学性能仿真计算。结果表明:高速动车组镟修策略应从高速动车组的运用状态、主要运营线路和车辆设计参数3个方面综合考虑;京津城际铁路CRH3C型动车组车轮镟修周期可定为30万km;轮轨接触几何和动力学仿真验证了为CRH3C型动车组新设计的镟修用薄轮缘车轮的临界速度均在400km.h-1以上,其运行稳定性与原型车轮相差不大。  相似文献   

2.
对某条线路服役的两列CRH2A型车进行了长期跟踪测试。基于等效锥度的要求,获得了车轮外形及车辆动力学性能的演变规律。研究发现,两列跟踪动车组在三级修间隔周期由60万km延长至120万km后,各项动力学性能、磨耗情况无明显变化,均满足标准限值要求,因此建议将CHR2型车三级修间隔周期延长60万km。  相似文献   

3.
车轮直径旋修量由单次旋修的车轮旋修量,轮辋旋修次数决定。单次旋修量由旋修方法,旋修时的目标外形决定,而旋修次数由车轮轮踏面的磨耗规律及旋修周期决定。通过理论分析和旋修验证,分析了CRH1型动车组系列LMD系列薄轮缘外形的单次直径旋修量偏大原因;统计分析了东南沿海26列CRH1型动车组轮缘踏面磨耗规律,以及旋修过程的轮径差、径跳、直径旋修量,轮径差等参数,在此基础之上预测了不同旋修方法的车轮使用寿命。研究结果显示:LMD系统薄轮缘外形是造成直径旋修量偏大的原因之一;依据既有车轮磨耗规律和旋修方法,CRH1型动车组车轮使用寿命均在3.3×106 km以上;通过计算,车轮寿命最大旋修方法为:高级修时车轮恢复为轮缘厚度为30mm的薄轮缘外形;其他服役过程旋修时,车轮外形恢复为与磨耗后轮缘厚度最近的薄轮缘外形,但最小轮缘厚不能小于为28mm。  相似文献   

4.
结合动车组30万km运用跟踪检测结果,分析总结了LM_D型踏面轮对的磨耗性能,并提出了LM_D型踏面的旋修周期。  相似文献   

5.
针对我国某型城际动车组服役过程中车轮磨损速率高问题,开展车轮型面和研磨子影响研究的现场试验.第1阶段涉及多列动车组,使用LMA型面和持续高压作用的高硬度研磨子,第2阶段涉及1列动车组,第1镟修周期仅将半列车更换为LM型面,第2镟修周期进一步在全列车使用间歇低压作用的低硬度研磨子.结果表明,第1阶段城际动车组车轮磨耗不同于干线动车组,第2阶段2种型面的磨耗不存在本质差异,但更换研磨子材质和工作模式降低车轮磨耗速率.基于第2阶段数据,建立一种计算研磨子和轮轨接触对车轮磨耗方法,发现车轮名义滚动圆处由研磨子引起的磨耗速率在第2阶段的第1和2镟修周期分别为0.12 mm/万km和0.02 mm/万km,轮轨接触引起的磨耗速率为0.08 mm/万km.  相似文献   

6.
踏面凹形磨耗是我国高速列车服役过程中车轮磨耗的主要形式,踏面凹形磨耗随镟修后里程逐渐加剧,将引起轮轨接触关系的变化,进而引起车辆动力学性能的恶化。为揭示我国高速列车踏面凹形磨耗的特点和规律,通过对国内某高速动车组的部分车轮进行长期跟踪测试,并基于测试结果研究踏面不同位置的磨耗量,发现磨耗中心位置与名义滚动圆的偏离现象,提出基于离散点直接积分的磨耗面积表征方法。进一步通过数学推导、多体动力学建模与仿真、以及车载实测振动数据的分析验证,研究不同踏面凹形磨耗程度情况下,车辆临界速度、轮轨作用力、振动信号的蛇行运动频率等动力学特性和指标随车轮旋修后运行里程的变化情况,总结得到踏面凹形磨耗对高速列车动力学的影响规律。  相似文献   

7.
基于大数据分析思想,通过调用高速铁路动车组检修数据库中的海量车轮镟修记录,利用MATLAB工具自编统计分析程序,对我国2条高速铁路(京沪高铁、京广高铁武广段)运营动车组车轮一个镟修周期内车轮磨耗量进行统计分析。大样本统计分析结果表明,对于同一条高铁线路一个镟修周期内350?km/h速度等级的高速动车组,短编组动车组车轮磨耗量均值高于长编组动车组、CRH380A型动车组车轮磨耗量均值小于CRH380B型动车组、CRH3C动车组车轮磨耗量均值小于CRH380B。不同高铁线路相同类型动车组车轮磨耗量样本统计均值及磨耗量统计分布也不尽相同。研究结论对高铁轮轨关系、高速动车组车辆结构设计具有重大意义。  相似文献   

8.
车轮磨耗直接影响车辆性能和车轮使用寿命,是高速动车组设计的核心技术,由于影响车辆磨耗的因素复杂多变,目前通过仿真和台架试验尚不能准确预测出高速列车车轮的磨耗特征。通过开展大量高速动车组车轮磨耗线路跟踪测试,从镟修周期、运行速度、气候条件、线路状态等多角度总结分析动车组运行环境对车轮磨耗的影响及其演化规律;针对实际运用中出现的轮轨匹配不良问题,设计了新型高速动车组车轮踏面,使其线路适应性更强,并批量应用在我国自主设计的中国标准动车组上,运用效果良好。  相似文献   

9.
为了优化CRH380B动车组轮缘厚高级修镟修限值,基于不同轮缘厚条件下的轮对磨耗规律和车辆动力学性能分析,采用多体动力学软件和Archard磨耗理论联合仿真求解的方式,利用非线性磨耗模型对车轮磨损进行预测,并使用多体并行仿真方法实时更新状态参数和接触力.结合仿真计算分析结果,并与实测数据对比,可发现当车辆运行速度低于3...  相似文献   

10.
基于武广线上运行的某高速动车组车轮的磨耗状态的跟踪测试,发现车轮踏面以凹形磨耗为主。对不同运行阶段实测车轮踏面磨耗状态进行分析,研究磨耗车轮与钢轨接触时的接触几何参数。根据线路上实际运行动车组性能参数,运用SIMPACK软件包完成车辆系统动力学模型,对比分析S1002CN车轮与实测踏面车辆的运行稳定性、平稳性及安全性指标,研究车轮踏面凹形磨耗对列车动力学性能的影响。研究结果表明:车轮踏面凹形磨耗将导致转向架及轮对横向加速度急剧增大,车辆稳定性、平稳性将有所降低,凹形磨耗是引起转向架横向报警的直接原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号